Abstract

This study investigated the wear performances of ZrO2 reinforced 316L stainless steel matrix composite materials. The 316L matrix was mechanically alloyed by adding three different amounts (1 wt%, 2 wt%, and 3 wt%) of ZrO2 for 60 min. Mechanically alloyed powders were shaped through a uniaxial hydraulic press under 800 MPa pressure, and thus, green compacts in Ø12 × 6 mm dimensions were produced. The green compacts produced were sintered at 1300 °C in a vacuum environment of 10−6 mbar for 2 h. Sintered composites were characterized by hardness and density measurements and microstructure studies. The wear tests were carried out under ASTM G99-05 standards through a pin-on-disc wear test device, exerting three different loads (10 N, 20 N, and 30 N) and using four different sliding distances (500 m, 1000 m, 1500 m, and 2000 m). As a result of the studies, it was observed that the reinforcement material (ZrO2), added to the matrix, was positioned at the grain boundaries. As the amount of reinforcement within the matrix increased, the hardness of the composites increased while their densities decreased. In the wear test results, on the other hand, the increase in the amount of reinforcement decreased the weight loss. As for the wear surfaces, the abrasive wear mechanism was dominant.

References

1.
Majumdar
,
J. D.
,
Kumar
,
A.
, and
Li
,
L.
,
2009
, “
Direct Laser Cladding of SiC Dispersed AISI 316L Stainless Steel
,”
Tribol. Int.
,
42
(
5
), pp.
750
753
.
2.
Dincel
,
Ö.
,
Şimşek
,
İ.
, and
Özyürek
,
D.
,
2021
, “
Investigation of the Wear Behavior in Simulated Body Fluid of 316L Stainless Steels Produced by Mechanical Alloying Method
,”
Int. J. Eng. Sci. Technol.
,
24
(
1
), pp.
35
40
.
3.
Lin
,
S.
, and
Xiong
,
W.
,
2012
, “
Microstructure and Abrasive Behaviors of TiC-316L Composites Prepared by Warm Compaction and Microwave Sintering
,”
Adv. Powder Technol.
,
23
(
3
), pp.
419
425
.
4.
De Las Heras
,
E.
,
Egidi
,
D. A.
,
Corengia
,
P.
,
González-Santamaría
,
D.
,
García-Luis
,
A.
,
Brizuela
,
M.
,
López
,
G. A.
, and
Martinez
,
M. F.
,
2008
, “
Duplex Surface Treatment of an AISI 316L Stainless Steel; Microstructure and Tribological Behaviour
,”
Surf. Coat. Technol.
,
202
(
13
), pp.
2945
2954
.
5.
Krishna
,
D. S. R.
, and
Sun
,
Y.
,
2005
, “
Effect of Thermal Oxidation Conditions on Tribological Behaviour of Titanium Films on 316L Stainless Steel
,”
Surf. Coat. Technol.
,
198
(
1–3
), pp.
447
453
.
6.
Farid
,
A.
,
Guo
,
S.
,
Cui
,
F. E.
,
Feng
,
P.
, and
Lin
,
T.
,
2007
, “
TiB2 and TiC Stainless Steel Matrix Composites
,”
Mater. Lett.
,
61
(
1
), pp.
189
191
.
7.
AlMangour
,
B.
,
Grzesiak
,
D.
, and
Yang
,
J. M.
,
2017
, “
Selective Laser Melting of TiB2/316L Stainless Steel Composites: The Roles of Powder Preparation and Hot Isostatic Pressing Post-Treatment
,”
Powder Technol.
,
309
, pp.
37
48
.
8.
Imbaby
,
M. F.
, and
Jiang
,
K.
,
2009
, “
Fabrication of Free Standing 316-L Stainless Steel–Al2O3 Composite Micro Machine Parts by Soft Moulding
,”
Acta Mater.
,
57
(
16
), pp.
4751
4757
.
9.
Delbari
,
S. A.
,
Namini
,
A. S.
, and
Asl
,
M. S.
,
2019
, “
Hybrid Ti Matrix Composites With TiB2 and TiC Compounds
,”
Mater. Today Commun.
,
20
, p.
100576
.
10.
Attar
,
H.
,
Ehtemam-Haghighi
,
S.
,
Kent
,
D.
,
Okulov
,
I. V.
,
Wendrock
,
H.
,
Bӧnisch
,
M.
,
Volegov
,
A. S.
,
Calin
,
M.
,
Eckert
,
J.
, and
Dargusch
,
M. S.
,
2017
, “
Nanoindentation and Wear Properties of Ti and Ti-TiB Composite Materials Produced by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
688
, pp.
20
26
.
11.
Riquelme
,
A.
,
de Rojas Candela
,
C. S.
,
Rodrigo
,
P.
, and
Rams
,
J.
,
2022
, “
Influence of Process Parameters in Additive Manufacturing of Highly Reinforced 316L/SiCp Composites
,”
J. Mater. Process. Technol.
,
299
, p.
117325
.
12.
Akhtar
,
F.
, and
Guo
,
S. J.
,
2008
, “
Microstructure, Mechanical and Fretting Wear Properties of TiC-Stainless Steel Composites
,”
Mater. Charact.
,
59
(
1
), pp.
84
90
.
13.
Sımsek
,
D.
, and
Ozyurek
,
D.
,
2020
, “
The Wear Performance at High Temperatures of ZrO2-Reinforced Aluminum Matrix Composites Produced by Mechanochemical Reaction Method
,”
ASME J. Tribol.
,
142
(
10
), p.
101701
.
14.
Simsek
,
D.
,
Simsek
,
I.
, and
Ozyurek
,
D.
,
2019
, “
Relationship Between Al2O3 Content and Wear Behavior of Al+ 2% Graphite Matrix Composites
,”
Sci. Eng. Compos. Mater.
,
27
(
1
), pp.
177
185
.
15.
Prabhu
,
B.
,
Suryanarayana
,
C.
,
An
,
L.
, and
Vaidyanathan
,
R.
,
2006
, “
Synthesis and Characterization of High-Volume Fraction Al–Al2O3 Nanocomposite Powders by High-Energy Milling
,”
Mater. Sci. Eng. A
,
425
(
1–2
), pp.
192
200
.
16.
Özyürek
,
D.
,
Tekeli
,
S.
,
Güral
,
A.
,
Meyveci
,
A.
, and
Gürü
,
M.
,
2010
, “
Effect of Al2O3 Amount on Microstructure and Wear Properties of Al–Al2O3 Metal Matrix Composites Prepared Using Mechanical Alloying Method
,”
Powder Metall. Met. Ceram.
,
49
(
5–6
), pp.
289
294
.
17.
Fogagnolo
,
J. B.
,
Velasco
,
F.
,
Robert
,
M. H.
, and
Torralba
,
J. M.
,
2003
, “
Effect of Mechanical Alloying on the Morphology, Microstructure and Properties of Aluminium Matrix Composite Powders
,”
Mater. Sci. Eng. A
,
342
(
1–2
), pp.
131
143
.
18.
Yavuzer
,
B.
,
Özyürek
,
D.
, and
Gürü
,
M.
,
2019
, “
The Effect of Milling Time on Microstructure and Wear Behaviours of AISI 304 Stainless Steel Produced by Powder Metallurgy
,”
Acta Phys. Pol. A.
,
135
(
4
), pp.
735
738
.
19.
Sekar
,
K.
,
Jayachandra
,
G.
, and
Aravindan
,
S.
,
2018
, “
Mechanical and Welding Properties of A6082-SiC-ZrO2 Hybrid Composite Fabricated by Stir and Squeeze Casting
,”
Mater. Today: Proc.
,
5
(
9
), pp.
20268
20277
.
20.
Zhai
,
W.
,
Zhou
,
W.
,
Mui Ling Nai
,
S.
, and
Wei
,
J.
,
2020
, “
Characterization of Nanoparticle Mixed 316 L Powder for Additive Manufacturing
,”
J. Mater. Sci. Technol.
,
47
, pp.
162
168
.
21.
AlMangour
,
B.
,
Grzesiak
,
D.
, and
Yang
,
J. M.
,
2017
, “
In-Situ Formation of Novel TiC-Particle-Reinforced 316L Stainless Steel Bulk-Form Composites by Selective Laser Melting
,”
J. Alloys Compd.
,
706
, pp.
409
418
.
22.
Wang
,
D.
,
Song
,
C.
,
Yang
,
Y.
, and
Bai
,
Y.
,
2016
, “
Investigation of Crystal Growth Mechanism During Selective Laser Melting and Mechanical Property Characterization of 316L Stainless Steel Parts
,”
Mater. Des.
,
100
, pp.
291
299
.
23.
Borunova
,
A. B.
,
Streletskii
,
A. N.
,
Mudretsova
,
S. N.
,
Leonov
,
A. V.
, and
Butyagin
,
P. Y.
,
2011
, “
Low Temperature Mechanochemical Synthesis of Nanosized Silicon Carbide
,”
J. Colloid Sci.
,
73
(
5
), pp.
605
613
.
24.
Zhao
,
Z.
,
Li
,
J.
,
Bai
,
P.
,
Qu
,
H.
,
Liang
,
M.
,
Liao
,
H.
,
Wu
,
L.
,
Huo
,
P.
,
Liu
,
H.
, and
Zhang
,
J.
,
2019
, “
Microstructure and Mechanical Properties of TiC-Reinforced 316L Stainless Steel Composites Fabricated Using Selective Laser Melting
,”
Metals
,
9
(
2
), p.
267
.
25.
Jain
,
J.
,
Kar
,
A. M.
, and
Upadhyaya
,
A.
,
2014
, “
Effect of YAG Addition on Sintering of P/M 316L and 434L Stainless Steels
,”
Mater. Lett.
,
58
(
14
), pp.
2037
2040
.
26.
Li
,
J.
,
Zhao
,
Z.
,
Bai
,
P.
,
Qu
,
H.
,
Liu
,
B.
,
Li
,
L.
,
Wu
,
L.
,
Guan
,
R.
,
Liu
,
H.
, and
Guo
,
Z.
,
2019
, “
Microstructural Evolution and Mechanical Properties of IN718 Alloy Fabricated by Selective Laser Melting Following Different Heat Treatments
,”
J. Alloys Compd.
,
772
, pp.
861
870
.
27.
Tasdemir
,
F.
,
Özyürek
,
D.
, and
Yildirim
,
M.
,
2019
, “
An Investigation of the Wear Behaviours of Nano Al2O3 Particle Reinforced Cu Composites
,”
Acta Phys. Pol. A.
,
135
(
4
), pp.
729
731
.
28.
Jain
,
A.
,
Basu
,
B.
,
Kumar
,
B. M.
, and
Sarkar
,
J.
,
2010
, “
Grain Size–Wear Rate Relationship for Titanium in Liquid Nitrogen Environment
,”
Acta Mater.
,
58
(
7
), pp.
2313
2323
.
29.
Tekeli
,
S.
,
Güral
,
A.
, and
Özyürek
,
D.
,
2007
, “
Dry Sliding Wear Behavior of Low Carbon Dual Phase Powder Metallurgy Steels
,”
Mater. Des.
,
28
(
5
), pp.
1685
1688
.
30.
Kiliç
,
M.
,
Ozyurek
,
D.
, and
Tuncay
,
T.
,
2016
, “
Dry Sliding Wear Behaviour and Microstructure of the W–Ni–Fe and W–Ni–Cu Heavy Alloys Produced by Powder Metallurgy Technique
,”
Powder Metall. Met. Ceram.
,
55
(
1–2
), pp.
54
63
.
31.
Büyükkayacı
,
E.
,
Şimşek
,
İ.
, and
Özyürek
,
D.
,
2021
, “
Influence of Mechanical Alloying Time on Microstructure and Wear Behaviors of Fe–Cu–C Alloy
,”
Met. Mater. Int.
,
27
(
11
), pp.
4618
4625
.
You do not currently have access to this content.