Abstract

The aim of this study was to develop a novel set of Al2O3-B2O3-CuO composites and evaluate their tribological performance at varying humidity (10–95% relative humidity) levels. First, the Al2O3-B2O3 composites were prepared using cold press sintering by varying the amount of B2O3 (5–20 wt%). The results revealed that an increase in B2O3 content in the composites increased the amount of aluminum borate in situ phase during sintering. The presence of the aluminum borate phase in the composite enhanced the hardness and wear resistance, whereas the humidity-sensitive alumina phase reduced friction at higher humidity levels. Next, CuO (5 wt%) was added to the Al2O3-B2O3 composites to form Al2O3-B2O3-CuO composites. These composites showed an increase in the percentage relative density by 16–37% and hardness by 1.2–1.9 times. Subsequently, the tribological performance was improved significantly. The underlying mechanism for improved wear resistance was discussed using the crystal-chemical approach and polarization theory to guide the design of these novel Al2O3-B2O3-CuO composites.

References

1.
Ruys
,
A. J.
,
2018
,
Alumina Ceramics: Biomedical and Clinical Applications
,
Woodhead Publishing
,
Duxford, UK
.
2.
Vila
,
R.
,
González
,
M.
,
Mollá
,
J.
, and
Ibarra
,
A.
,
1998
, “
Dielectric Spectroscopy of Alumina Ceramics Over a Wide Frequency Range
,”
J. Nucl. Mater.
,
253
(
1
), pp.
141
148
.
3.
Badmos
,
A. Y.
, and
Ivey
,
D. G.
,
2001
, “
Characterization of Structural Alumina Ceramics Used in Ballistic Armour and Wear Applications
,”
J. Mater. Sci.
,
36
(
20
), pp.
4995
5005
.
4.
Dong
,
X.
,
Jahanmir
,
S.
, and
Hsu
,
S. M.
,
1991
, “
Tribological Characteristics of α-Alumina at Elevated Temperatures
,”
J. Am. Ceram. Soc.
,
74
(
5
), pp.
1036
1044
.
5.
Zhang
,
W.
,
Yi
,
M.
,
Xiao
,
G.
,
Ma
,
J.
,
Wu
,
G.
, and
Xu
,
C.
,
2018
, “
Al2O3-Coated h-BN Composite Powders and as-Prepared Si3N4-Based Self-Lubricating Ceramic Cutting Tool Material
,”
Int. J. Refract. Met. Hard Mater.
,
71
, pp.
1
7
.
6.
Kasar
,
A. K.
, and
Menezes
,
P. L.
,
2020
, “
Friction and Wear Behavior of Alumina Composites With In-Situ Formation of Aluminum Borate and Boron Nitride
,”
Materials
,
13
(
20
), p.
4502
.
7.
Chen
,
Z.
,
Ji
,
L.
,
Guo
,
N.
, and
Guo
,
R.
,
2018
, “
Mechanical Properties and Microstructure of Al2O3/TiC Based Self-Lubricating Ceramic Tool With CaF2-Al (HO)3
,”
Int. J. Refract. Met. Hard Mater.
,
75
, pp.
50
55
.
8.
Wu
,
G.
,
Xu
,
C.
,
Xiao
,
G.
,
Yi
,
M.
, and
Chen
,
Z.
,
2018
, “
Structure Design of Al2O3/TiC/CaF2 Multicomponent Gradient Self-Lubricating Ceramic Composite and Its Tribological Behaviors
,”
Ceram. Int.
,
44
(
5
), pp.
5550
5563
.
9.
Su
,
Y.
,
Zhang
,
Y.
,
Song
,
J.
, and
Hu
,
L.
,
2017
, “
Novel Approach to the Fabrication of an Alumina-MoS2 Self-Lubricating Composite via the In Situ Synthesis of Nanosized MoS2
,”
ACS Appl. Mater. Interfaces
,
9
(
36
), pp.
30263
30266
.
10.
Wang
,
Z.
,
Wu
,
L.
,
Qi
,
Y.
,
Cai
,
W.
, and
Jiang
,
Z.
,
2010
, “
Self-lubricating Al2O3/PTFE Composite Coating Formation on Surface of Aluminium Alloy
,”
Surf. Coat. Technol.
,
204
(
20
), pp.
3315
3318
.
11.
Sheng
,
C.
,
Xu
,
C.
,
Chen
,
H.
,
Yi
,
M.
,
Xiao
,
G.
,
Chen
,
Z.
, and
Xu
,
L.
,
2019
, “
Investigation of Al2O3/TiB2 Ceramic Cutting Tool Materials With the Addition of Core–Shell Structured Ni–B Coated CaF2
,”
Int. J. Mater. Res.
,
110
(
8
), pp.
788
792
.
12.
Feng
,
Y.
,
Zhang
,
J.
,
Wang
,
L.
,
Zhang
,
W.
,
Tian
,
Y.
, and
Kong
,
X.
,
2017
, “
Fabrication Techniques and Cutting Performance of Micro-Textured Self-Lubricating Ceramic Cutting Tools by In-Situ Forming of Al2O3-TiC
,”
Int. J. Refract. Met. Hard Mater.
,
68
, pp.
121
129
.
13.
Chen
,
Z.
,
Guo
,
N.
,
Ji
,
L.
, and
Xu
,
C.
,
2019
, “
Synthesis of CaF2 Nanoparticles Coated by SiO2 for Improved Al2O3/TiC Self-Lubricating Ceramic Composites
,”
Nanomaterials
,
9
(
11
), p.
1522
.
14.
Sheng
,
C.
,
Yi
,
M.
,
Xiao
,
G.
,
Li
,
M.
, and
Xu
,
C.
,
2017
, “
Study on Microstructure and Properties of Al2O3/(W, Ti) C Self-Lubricating Tool Material With the Addition of Al(OH)3 Coated CaF2
,”
Adv. Modell. Anal. A
,
90
(
4
), pp.
328
340
.
15.
Hernández
,
M. F.
,
Suárez
,
G.
,
Cipollone
,
M.
,
Conconi
,
M. S.
,
Aglietti
,
E. F.
, and
Rendtorff
,
N. M.
,
2017
, “
Formation, Microstructure and Properties of Aluminum Borate Ceramics Obtained From Alumina and Boric Acid
,”
Ceram. Int.
,
43
(
2
), pp.
2188
2195
.
16.
Hernández
,
M. F.
,
Suárez
,
G.
,
Baudin
,
C.
,
Pena Castro
,
P.
,
Aglietti
,
E. F.
, and
Rendtorff
,
N.
,
2018
, “
Densification of Lightweight Aluminum Borate Ceramics by Direct Sintering of Milled Powders
,”
J. Asian Ceram. Soc.
,
6
(
4
), pp.
374
383
.
17.
Paluri
,
R.
, and
Ingole
,
S.
,
2011
, “
Surface Characterization of Novel Alumina-Based Composites for Energy Efficient Sliding Systems
,”
JOM
,
63
(
6
), pp.
77
83
.
18.
Feng
,
Y.
,
Geng
,
L.
,
Zheng
,
P.
,
Zheng
,
Z.
, and
Wang
,
G.
,
2008
, “
Fabrication and Characteristic of Al-Based Hybrid Composite Reinforced With Tungsten Oxide Particle and Aluminum Borate Whisker by Squeeze Casting
,”
Mater. Des.
,
29
(
10
), pp.
2023
2026
.
19.
Yang
,
C.
,
Zong
,
Y.
,
Zheng
,
Z.
, and
Shan
,
D.
,
2014
, “
Experimental and Theoretical Investigation on the Compressive Behavior of Aluminum Borate Whisker Reinforced 2024Al Composites
,”
Mater. Charact.
,
96
, pp.
84
92
.
20.
Wang
,
Y.
,
Liu
,
M.
,
Sun
,
Y.
,
Shang
,
Y.
,
Jiang
,
B.
,
Zhang
,
H.
, and
Jiang
,
Z.
,
2015
, “
Aluminium Borate Whiskers Grafted With Boric Acid Containing Poly(Ether Ether Ketone) as a Reinforcing Agent for the Preparation of Poly(Ether Ether Ketone) Composites
,”
RSC Adv.
,
5
(
122
), pp.
100856
100864
.
21.
Gönenli
,
I. E.
, and
Tas
,
A. C.
,
2000
, “
Chemical Preparation of Aluminum Borate Whiskers
,”
Powder Diffr.
,
15
(
2
), pp.
104
107
.
22.
Hu
,
Z.
,
Shi
,
Y.
,
Wang
,
L.
, and
Peng
,
Y.
,
2001
, “
Study on Antiwear and Reducing Friction Additive of Nanometer Aluminum Borate
,”
Tribol. Lubr. Technol.
,
57
(
3
), pp.
23
27
.
23.
Shah
,
F. U.
,
Glavatskih
,
S.
, and
Antzutkin
,
O. N.
,
2013
, “
Boron in Tribology: From Borates to Ionic Liquids
,”
Tribol. Lett.
,
51
(
3
), pp.
281
301
.
24.
Saffari
,
H. R. M.
,
Soltani
,
R.
,
Alaei
,
M.
, and
Soleymani
,
M.
,
2018
, “
Tribological Properties of Water-Based Drilling Fluids With Borate Nanoparticles as Lubricant Additives
,”
J. Pet. Sci. Eng.
,
171
, pp.
253
259
.
25.
Shigeno
,
K.
,
Katsumura
,
H.
,
Kagata
,
H.
,
Asano
,
H.
, and
Inoue
,
O.
, “
Low Temperature Sintering of Alumina by CuO-TiO2-Nb2O5 Additives
,”
Trans. Tech. Publ.
, pp.
181
184
.
26.
Teow
,
H. L.
,
Sivanesan
,
S. K.
, and
Noum
,
S. Y. E.
,
2020
, “
Densification Behaviour and Mechanical Properties of CuO Doped Zirconia-Toughened Alumina (ZTA) Composites Prepared by Two-Stage Sintering
,”
AIP Conference Proceedings
,
AIP Publishing LLC
, p.
020028
.
27.
Sathiyakumar
,
M.
, and
Gnanam
,
F.
,
2002
, “
Influence of MnO and TiO2 Additives on Density, Microstructure and Mechanical Properties of Al2O3
,”
Ceram. Int.
,
28
(
2
), pp.
195
200
.
28.
Molisani
,
A.
,
Goldenstein
,
H.
, and
Yoshimura
,
H.
,
2017
, “
The Role of CaO Additive on Sintering of Aluminum Nitride Ceramics
,”
Ceram. Int.
,
43
(
18
), pp.
16972
16979
.
29.
Keramat
,
E.
, and
Hashemi
,
B.
,
2021
, “
Modelling and Optimizing the Liquid Phase Sintering of Alumina/CaO–SiO2–Al2O3 Ceramics Using Response Surface Methodology
,”
Ceram. Int.
,
47
(
3
), pp.
3159
3172
.
30.
Zhang
,
G.
,
Yang
,
J.
,
Ando
,
M.
,
Ohji
,
T.
, and
Kanzaki
,
S.
,
2004
, “
Reactive Synthesis of Alumina-Boron Nitride Composites
,”
Acta. Mater.
,
52
(
7
), pp.
1823
1835
.
31.
Gates
,
R.
,
Hsu
,
M.
, and
Klaus
,
E.
,
1989
, “
Tribochemical Mechanism of Alumina With Water
,”
Tribol. Trans.
,
32
(
3
), pp.
357
363
.
32.
Murakami
,
T.
,
Ouyang
,
J. H.
,
Sasaki
,
S.
,
Umeda
,
K.
, and
Yoneyama
,
Y.
,
2005
, “
High-Temperature Tribological Properties of Al2O3, Ni–20mass% Cr and NiAl Spark-Plasma-Sintered Composites Containing BaF2–CaF2 Phase
,”
Wear
,
259
(
1
), pp.
626
633
.
33.
Deng
,
J.
,
Liu
,
L.
,
Yang
,
X.
,
Liu
,
J.
,
Sun
,
J.
, and
Zhao
,
J.
,
2007
, “
Self-Lubrication of Al2O3/TiC/CaF2 Ceramic Composites in Sliding Wear Tests and in Machining Processes
,”
Mater. Des.
,
28
(
3
), pp.
757
764
.
34.
Fu
,
Y.
,
Shen
,
P.
,
Hu
,
Z.
,
Sun
,
C.
,
Guo
,
R.
, and
Jiang
,
Q.
,
2016
, “
The Role of CuO–TiO2 Additives in the Preparation of High-Strength Porous Alumina Scaffolds Using Directional Freeze Casting
,”
J. Porous Mater.
,
23
(
2
), pp.
539
547
.
35.
Zhu
,
C.
,
Li
,
W.
,
Nai
,
X.
,
Zhu
,
D.
,
Guo
,
F.
, and
Song
,
S.
,
2012
, “
Preparation of Copper Aluminum Borate Whiskers via Flux Method
,”
Cryst. Res. Technol.
,
47
(
1
), pp.
73
78
.
36.
Zhu
,
C.
,
Nai
,
X.
,
Zhu
,
D.
,
Guo
,
F.
,
Zhang
,
Y.
, and
Li
,
W.
,
2013
, “
Growth Process of Cu2Al6B4O17 Whiskers
,”
J. Solid State Chem.
,
197
, pp.
1
6
.
37.
Erdemir
,
A.
,
2000
, “
A Crystal-Chemical Approach to Lubrication by Solid Oxides
,”
Tribol. Lett.
,
8
(
2
), pp.
97
102
.
38.
Metz
,
R. B.
,
Nicolas
,
C.
,
Ahmed
,
M.
, and
Leone
,
S. R.
,
2005
, “
Direct Determination of the Ionization Energies of FeO and CuO With VUV Radiation
,”
J. Chem. Phys.
,
123
(
11
), p.
114313
.
39.
Khalil
,
H.
,
Le Quéré
,
F.
,
Léonard
,
C.
, and
Brites
,
V.
,
2013
, “
Theoretical Investigations on CaO Ions: Vibronic States and Photoelectron Spectroscopy
,”
J. Phys. Chem. A
,
117
(
44
), pp.
11254
11260
.
40.
Prakash
,
B.
, and
Celis
,
J.-P.
,
2007
, “
The Lubricity of Oxides Revised Based on a Polarisability Approach
,”
Tribol. Lett.
,
27
(
1
), pp.
105
112
.
41.
Dimitrov
,
V.
, and
Komatsu
,
T.
,
1999
, “
Effect of Interionic Interaction on the Electronic Polarizability, Optical Basicity and Binding Energy of Simple Oxides
,”
J. Ceram. Soc. Jpn.
,
107
(
1251
), pp.
1012
1018
.
42.
Dimitrov
,
V.
, and
Komatsu
,
T.
,
2002
, “
Classification of Simple Oxides: A Polarizability Approach
,”
J. Solid State Chem.
,
163
(
1
), pp.
100
112
.
43.
Dimitrov
,
V.
, and
Komatsu
,
T.
,
2000
, “
Interionic Interactions, Electronic Polarizability and Optical Basicity of Oxide Glasses
,”
J. Ceram. Soc. Jpn.
,
108
(
1256
), pp.
330
338
.
You do not currently have access to this content.