Abstract

Halloysite (tubular), montmorillonite (platy), and wollastonite (acicular) type clay silicate morphologies-based magnesium oxide (MgO) filled compression-molded hybrid friction composites were fabricated followed by their mechanical (compressive), thermal (onset of degradation), thermo-mechanical (loss modulus), and tribological performance (CoF, fade, recovery, wear) evaluation. The friction-fade and friction-recovery due to braking-induced heating and cooling cycles vis-a-vis the instantaneous braking performances were evaluated following SAEJ661, on a chase-type friction tester. The combination of halloysite–MgO in the friction composite led to minimum fade (∼2.2%), whereas that of wollastonite–MgO showed a maximum friction coefficient (∼0.47) with enhanced rotor friendliness as indicated from optical surface profilometry. Montmorillonite–MgO-based composites showed a maximum wear resistance along with a greater extent of friction stabilization as supported by ID/IG data from Raman spectra. The performance attributes remained governed by the compressive stiffness of the friction composites, hardness, thermal stability, and morphological aspects of the clay-type silicates, and their induced contact dynamics as evident from scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM–EDX) studies. The heat dissipation mechanism, the disc temperature rise, and friction coefficient under instantaneous braking condition were found to be controlled by MgO in the composites. The study demonstrates that clay-type silicate morphologies in combination with MgO as a mild abrasive may lead to synergistic fade–recovery performance without compromising the compressive stiffness response of the braking surface, enabling increased wear resistance.

References

1.
Chan
,
D.
, and
Stachowiak
,
G. W.
,
2004
, “
Review of Automotive Brake Friction Materials
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
218
(
9
), pp.
953
966
.
2.
Cai
,
P.
,
Li
,
Z.
,
Wang
,
T.
, and
Wang
,
Q.
,
2015
, “
Effect of Aspect Ratios of Aramid Fiber on Mechanical and Tribological Behaviors of Friction Materials
,”
Tribol. Int.
,
92
, pp.
109
116
.
3.
Öztürk
,
B.
,
Arslan
,
F.
, and
Öztürk
,
S.
,
2013
, “
Effects of Different Kinds of Fibers on Mechanical and Tribological Properties of Brake Friction Materials
,”
Tribol. Trans.
,
56
(
4
), pp.
536
545
.
4.
Satapathy
,
B. K.
, and
Bijwe
,
J.
,
2005
, “
Fade and Recovery Behavior of Non-Asbestos Organic (NAO) Composite Friction Materials Based on Combinations of Rock Fibers and Organic Fibers
,”
J. Reinf. Plast. Compos.
,
24
(
6
), pp.
563
577
.
5.
Patnaik
,
A.
,
Kumar
,
M.
,
Satapathy
,
B. K.
, and
Tomar
,
B. S.
,
2010
, “
Performance Sensitivity of Hybrid Phenolic Composites in Friction Braking: Effect of Ceramic and Aramid Fibre Combination
,”
Wear
,
269
(
11
), pp.
891
899
.
6.
Sathyamoorthy
,
G.
,
Vijay
,
R.
, and
Lenin Singaravelu
,
D.
,
2022
, “
Synergistic Performance of Expanded Graphite—Mica Amalgamation Based Non-Asbestos Copper-Free Brake Friction Composites
,”
Surf. Topogr. Metrol. Prop.
,
10
(
1
), p.
015019
.
7.
Binda
,
F. F.
,
Oliveira
,
V. D. A.
,
Fortulan
,
C. A.
,
Palhares
,
L. B.
, and
dos Santos
,
C. G.
,
2020
, “
Friction Elements Based on Phenolic Resin and Slate Powder
,”
J. Mater. Res. Technol.
,
9
(
3
), pp.
3378
3383
.
8.
Jacobsson
,
H.
,
2003
, “
Aspects of Disc Brake Judder
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
217
(
6
), pp.
419
430
.
9.
Cho
,
M. H.
,
Ju
,
J.
,
Kim
,
S. J.
, and
Jang
,
H.
,
2006
, “
Tribological Properties of Solid Lubricants (Graphite, Sb2S3, MoS2) for Automotive Brake Friction Materials
,”
Wear
,
260
(
7
), pp.
855
860
.
10.
Tiwari
,
A.
,
Jaggi
,
H. S.
,
Kachhap
,
R. K.
,
Satapathy
,
B. K.
,
Maiti
,
S. N.
, and
Tomar
,
B. S.
,
2014
, “
Comparative Performance Assessment of Cenosphere and Barium Sulphate Based Friction Composites
,”
Wear
,
309
(
1
), pp.
259
268
.
11.
Dadkar
,
N.
,
Tomar
,
B. S.
,
Satapathy
,
B. K.
, and
Patnaik
,
A.
,
2010
, “
Performance Assessment of Hybrid Composite Friction Materials Based on Flyash–Rock Fibre Combination
,”
Mater. Des.
,
31
(
2
), pp.
723
731
.
12.
Manoharan
,
S.
,
Vijay
,
R.
,
Singaravelu
,
D. L.
,
Krishnaraj
,
S.
, and
Suresha
,
B.
,
2019
, “
Tribological Characterization of Recycled Basalt-Aramid Fiber Reinforced Hybrid Friction Composites Using Grey-Based Taguchi Approach
,”
Mater. Res. Express
,
6
(
6
), p.
065301
.
13.
Dante
,
R. C.
,
2016
, “3—Types of Friction Material Formulas,”
Handbook of Friction Materials and Their Applications
,
R. C.
Dante
, ed.,
Woodhead Publishing
,
Boston
, MA, pp.
29
54
.
14.
Perricone
,
G.
,
Matějka
,
V.
,
Alemani
,
M.
,
Valota
,
G.
,
Bonfanti
,
A.
,
Ciotti
,
A.
,
Olofsson
,
U.
, et al
,
2018
, “
A Concept for Reducing PM10 Emissions for Car Brakes by 50%
,”
Wear
,
396–397
, pp.
135
145
.
15.
Slifka
,
A. J.
,
Filla
,
B. J.
, and
Phelps
,
J. M.
,
1998
, “
Thermal Conductivity of Magnesium Oxide From Absolute, Steady-State Measurements
,”
J. Res. Natl. Inst. Stand. Technol.
,
103
(
4
), pp.
357
363
.
16.
Jumahat
,
A.
,
Talib
,
A.
, and
Abdullah
,
A.
,
2016
, “Wear Properties of Nanoclay Filled Epoxy Polymers and Fiber Reinforced Hybrid Composites,”
Nanoclay Reinforced Polymer Composite, Enginering Materials
,
M.
Jawaid
,
A.
Qaiss
and
R.
Bouhfid
,
eds., Springer
,
Singapore
, pp.
247
260
.
17.
Cai
,
P.
,
Wang
,
Y.
,
Wang
,
T.
, and
Wang
,
Q.
,
2016
, “
Improving Tribological Behaviors of Friction Material by Mullite
,”
Tribol. Int.
,
93
, pp.
282
288
.
18.
Singh
,
T.
,
Patnaik
,
A.
,
Satapathy
,
B. K.
,
Kumar
,
M.
, and
Tomar
,
B. S.
,
2013
, “
Effect of Nanoclay Reinforcement on the Friction Braking Performance of Hybrid Phenolic Friction Composites
,”
J. Mater. Eng. Perform.
,
22
(
3
), pp.
796
805
.
19.
Singh
,
T.
,
Tiwari
,
A.
,
Patnaik
,
A.
,
Chauhan
,
R.
, and
Ali
,
S.
,
2017
, “
Influence of Wollastonite Shape and Amount on Tribo-Performance of Non-Asbestos Organic Brake Friction Composites
,”
Wear
,
386–387
, pp.
157
164
.
20.
Hou
,
K.
,
Ouyang
,
J.
,
Zheng
,
C.
,
Zhang
,
J.
, and
Yang
,
H.
,
2017
, “
Surface-Modified Sepiolite Fibers for Reinforcing Resin Brake Composites
,”
Mater. Express
,
7
(
2
), pp.
104
112
.
21.
Satapathy
,
B. K.
,
Patnaik
,
A.
,
Dadkar
,
N.
,
Kolluri
,
D. K.
, and
Tomar
,
B. S.
,
2011
, “
Influence of Vermiculite on Performance of Flyash-Based Fibre-Reinforced Hybrid Composites As Friction Materials
,”
Mater. Des.
,
32
(
8
), pp.
4354
4361
.
22.
Saha
,
D.
, and
Satapathy
,
B. K.
,
2019
, “
Friction Hysteresis and Subsequent Wear Mechanism of Clay-Based Phenolic Composites Under Cyclic Load
,”
Mater. Today: Proc.
,
19
, pp.
196
204
.
23.
Saha
,
D.
, and
Satapathy
,
B. K.
,
2021
, “
Tuning of Friction Oscillation Amplitude in Halloysite, Montmorillonite, and Wollastonite Filled Friction Composites: Load, Speed, and Temperature Sensitivity
,”
ASME J. Tribol.
,
144
(
6
), p.
061706
.
24.
Saha
,
D.
, and
Satapathy
,
B. K.
,
2021
, “
Influence of Various Types of Clays on Velocity Dependence of Friction Composites
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
235
(
11
), pp.
2415
2431
.
25.
Jaggi
,
H. S.
,
Tiwari
,
A.
,
Satapathy
,
B. K.
, and
Patnaik
,
A.
,
2013
, “
Dynamic Mechanical Response and Fade–Recovery Performance of Friction Composites: Effect of Flyash and Resin Combination
,”
J. Reinf. Plast. Compos.
,
32
(
11
), pp.
835
845
.
26.
Jaggi
,
H. S.
,
Satapathy
,
B. K.
,
Patnaik
,
A.
,
Mehra
,
N. C.
, and
Tomar
,
B. S.
,
2012
, “
Temperature Dependence of Friction and Wear Performance and Thermomechanical Response of Flyash-Filled Brake Composites
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
227
(
4
), pp.
373
384
.
27.
Zhang
,
P.
,
Zhang
,
L.
,
Fu
,
K.
,
Wu
,
P.
,
Cao
,
J.
,
Shijia
,
C.
, and
Qu
,
X.
,
2019
, “
Fade Behaviour of Copper-Based Brake Pad During Cyclic Emergency Braking at High Speed and Overload Condition
,”
Wear
,
428–429
, pp.
10
23
.
28.
Scardaci
,
V.
, and
Compagnini
,
G.
,
2021
, “
Raman Spectroscopy Data Related to the Laser Induced Reduction of Graphene Oxide
,”
Data Brief
,
38
, p.
107306
.
29.
Patel
,
M.
,
Azanza Ricardo
,
C.
,
Scardi
,
P.
, and
Aswath
,
P.
,
2012
, “
Morphology, Structure and Chemistry of Extracted Diesel Soot—Part I: Transmission Electron Microscopy, Raman Spectroscopy, X-ray Photoelectron Spectroscopy and Synchrotron X-ray Diffraction Study
,”
Tribol. Int.
,
52
, pp.
29
39
.
30.
Xie
,
W.
,
Gao
,
Z.
,
Pan
,
W.-P.
,
Hunter
,
D.
,
Singh
,
A.
, and
Vaia
,
R.
,
2001
, “
Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite
,”
Chem. Mater.
,
13
(
9
), pp.
2979
2990
.
31.
Xie
,
W.
,
Gao
,
Z.
,
Liu
,
K.
,
Pan
,
W.-P.
,
Vaia
,
R.
,
Hunter
,
D.
, and
Singh
,
A.
,
2001
, “
Thermal Characterization of Organically Modified Montmorillonite
,”
Thermochim. Acta
,
367–368
, pp.
339
350
.
32.
Mendelovici
,
E.
,
Villalba
,
R.
, and
Sagarzazu
,
A.
,
1983
, “
Selective Destruction and Differentiation of Clay Minerals From Natural Diaspore Admixture by Mortar Grinding
,”
Int. J. Miner. Process.
,
11
(
2
), pp.
131
138
.
33.
Shepelev
,
O.
,
Kenig
,
S.
, and
Dodiuk
,
H.
,
2014
, “16—Nanotechnology Based Thermosets,”
Handbook of Thermoset Plastics
, 3rd ed.,
H.
Dodiuk
, and
S. H.
Goodman
, eds.,
William Andrew Publishing
,
Boston
, pp.
623
695
.
34.
Le Ba
,
T.
,
Alkurdi
,
A. Q.
,
Lukacs
,
I. E.
,
Molnar
,
J.
,
Wongwises
,
S.
,
Grof
,
G.
, and
Szilagyi
,
I. M.
,
2020
, “
A Novel Experimental Study on the Rheological Properties and Thermal Conductivity of Halloysite Nanofluids
,”
Nanomaterials (Basel)
,
10
(
9
), p.
1834
.
35.
Obeid
,
M.
,
Shukur
,
M.
, and
Al-Majeed
,
E.
,
2014
, “
Characteristic of Wollastonite Synthesized From Local Raw Materials
,”
Int. J. Eng. Technol.
,
4
, pp.
426
429
.
36.
Ahmadijokani
,
F.
,
Shojaei
,
A.
,
Arjmand
,
M.
,
Alaei
,
Y.
, and
Yan
,
N.
,
2019
, “
Effect of Short Carbon Fiber on Thermal, Mechanical and Tribological Behavior of Phenolic-Based Brake Friction Materials
,”
Compos. Part B: Eng.
,
168
, pp.
98
105
.
37.
Kumar
,
S.
,
Satapathy
,
B. K.
, and
Maiti
,
S. N.
,
2013
, “
Correlation of Morphological Parameters and Mechanical Performance of Polyamide-612/Poly (Ethylene–Octene) Elastomer Blends
,”
Polym. Adv. Technol.
,
24
(
5
), pp.
511
519
.
38.
Shin
,
M. W.
,
Kim
,
J. W.
,
Joo
,
B. S.
, and
Jang
,
H.
,
2015
, “
Wear and Friction-Induced Vibration of Brake Friction Materials With Different Weight Average Molar Mass Phenolic Resins
,”
Tribol. Lett.
,
58
(
10
), pp.
1
8
.
39.
Kachhap
,
R. K.
, and
Satapathy
,
B. K.
,
2014
, “
Synergistic Effect of Tungsten Disulfide and Cenosphere Combination on Braking Performance of Composite Friction Materials
,”
Mater. Des. (1980–2015)
,
56
, pp.
368
378
.
40.
Lee
,
S. M.
,
Shin
,
M. W.
,
Lee
,
W. K.
, and
Jang
,
H.
,
2013
, “
The Correlation Between Contact Stiffness and Stick–Slip of Brake Friction Materials
,”
Wear
,
302
(
1
), pp.
1414
1420
.
41.
Chang
,
L.
,
Zhang
,
Z.
,
Ye
,
L.
, and
Friedrich
,
K.
,
2008
, “Synergistic Effects of Nanoparticles and Traditional Tribo-Fillers on Sliding Wear of Polymeric Hybrid Composites,”
Tribology and Interface Engineering Series
,
K.
Friedrich
, and
A. K.
Schlarb
, eds.,
Elsevier
,
New York
, pp.
35
61
.
42.
Kumar
,
M.
,
Satapathy
,
B. K.
,
Patnaik
,
A.
,
Kolluri
,
D. K.
, and
Tomar
,
B. S.
,
2011
, “
Hybrid Composite Friction Materials Reinforced With Combination of Potassium Titanate Whiskers and Aramid Fibre: Assessment of Fade and Recovery Performance
,”
Tribol. Int.
,
44
(
4
), pp.
359
367
.
43.
Österle
,
W.
,
Dörfel
,
I.
,
Prietzel
,
C.
,
Rooch
,
H.
,
Cristol-Bulthé
,
A. L.
,
Degallaix
,
G.
, and
Desplanques
,
Y.
,
2009
, “
A Comprehensive Microscopic Study of Third Body Formation at the Interface Between a Brake Pad and Brake Disc During the Final Stage of a Pin-on-Disc Test
,”
Wear
,
267
(
5
), pp.
781
788
.
44.
Peng
,
T.
,
Yan
,
Q.
,
Zhang
,
X.
, and
Zhuang
,
Y.
,
2021
, “
Role of Titanium Carbide and Alumina on the Friction Increment for Cu-Based Metallic Brake Pads Under Different Initial Braking Speeds
,”
Friction
,
9
(
6
), pp.
1543
1557
.
45.
Satapathy
,
B. K.
,
Majumdar
,
A.
,
Jaggi
,
H. S.
,
Patnaik
,
A.
, and
Tomar
,
B. S.
,
2011
, “
Targeted Material Design of Flyash Filled Composites for Friction Braking Application by Non-Linear Regression Optimization Technique
,”
Comput. Mater. Sci.
,
50
(
11
), pp.
3145
3152
.
46.
Singh
,
T. E. J.
,
Patnaik
,
A.
, and
Satapathy
,
B. K.
,
2013
, “
Friction Braking Performance of Nanofilled Hybrid Fiber Reinforced Phenolic Composites: Influence of Nanoclay and Carbon Nanotubes
,”
Nano
,
8
(
3
), p.
1350025
.
47.
Kumar
,
S.
,
Maiti
,
S. N.
, and
Satapathy
,
B. K.
,
2017
, “
Halloysite Nanotubes Filled in Asymmetric Blend of Polyamide 6, 12/Poly (Ethylene-Octene) Elastomer: Tough-to-Brittle Transition in Nanocomposites
,”
Macromol. Symp.
,
373
(
1
), p.
1600155
.
48.
Satapathy
,
B. K.
,
Bijwe
,
J.
, and
Kolluri
,
D. K.
,
2005
, “
Assessment of Fiber Contribution to Friction Material Performance Using Grey Relational Analysis (GRA)
,”
J. Compos. Mater.
,
40
(
6
), pp.
483
501
.
49.
Kumar
,
M.
,
Satapathy
,
B. K.
,
Patnaik
,
A.
,
Kolluri
,
D. K.
, and
Tomar
,
B. S.
,
2012
, “
Evaluation of Fade-Recovery Performance of Hybrid Friction Composites Based on Ternary Combination of Ceramic-Fibers, Ceramic-Whiskers, and Aramid-Fibers
,”
J. Appl. Polym. Sci.
,
124
(
5
), pp.
3650
3661
.
50.
Kim
,
S. S.
,
Hwang
,
H. J.
,
Shin
,
M. W.
, and
Jang
,
H.
,
2011
, “
Friction and Vibration of Automotive Brake Pads Containing Different Abrasive Particles
,”
Wear
,
271
(
7
), pp.
1194
1202
.
51.
Elzayady
,
N.
, and
Elsoeudy
,
R.
,
2021
, “
Microstructure and Wear Mechanisms Investigation on the Brake Pad
,”
J. Mater. Res. Technol.
,
11
, pp.
2314
2335
.
52.
Kachhap
,
R. K.
, and
Satapathy
,
B. K.
,
2017
, “
“Cenosphere–Molybdenum Disulfide”–New Filler–Lubricant Combination for Performance Synergism in Composite Friction Materials
,”
ASME J. Tribol.
,
139
(
5
), p.
055001
.
53.
Bijwe
,
J.
,
Nidhi
,
Majumdar
,
N.
, and
Satapathy
,
B. K.
,
2005
, “
Influence of Modified Phenolic Resins on the Fade and Recovery Behavior of Friction Materials
,”
Wear
,
259
(
7
), pp.
1068
1078
.
54.
Österle
,
W.
,
Kloß
,
H.
,
Urban
,
I.
, and
Dmitriev
,
A. I.
,
2007
, “
Towards a Better Understanding of Brake Friction Materials
,”
Wear
,
263
(
7
), pp.
1189
1201
.
55.
Lee
,
S.
, and
Jang
,
H.
,
2018
, “
Effect of Plateau Distribution on Friction Instability of Brake Friction Materials
,”
Wear
,
400–401
, pp.
1
9
.
56.
Urbonaite
,
S.
,
Hälldahl
,
L.
, and
Svensson
,
G.
,
2008
, “
Raman Spectroscopy Studies of Carbide Derived Carbons
,”
Carbon
,
46
(
14
), pp.
1942
1947
.
57.
Chang
,
L.
, and
Friedrich
,
K.
,
2010
, “
Enhancement Effect of Nanoparticles on the Sliding Wear of Short Fiber-Reinforced Polymer Composites: A Critical Discussion of Wear Mechanisms
,”
Tribol. Int.
,
43
(
12
), pp.
2355
2364
.
58.
Wei
,
L.
,
Choy
,
Y. S.
, and
Cheung
,
C. S.
,
2019
, “
A Study of Brake Contact Pairs Under Different Friction Conditions With Respect to Characteristics of Brake Pad Surfaces
,”
Tribol. Int.
,
138
, pp.
99
110
.
59.
Verma
,
P. C.
,
Ciudin
,
R.
,
Bonfanti
,
A.
,
Aswath
,
P.
,
Straffelini
,
G.
, and
Gialanella
,
S.
,
2016
, “
Role of the Friction Layer in the High-Temperature Pin-on-Disc Study of a Brake Material
,”
Wear
,
346–347
, pp.
56
65
.
60.
Roman
,
A.
,
Vieira Braga Lemos
,
G.
, and
Gasparin
,
A. L.
,
2022
, “
Friction Material Wear: Effects and Interactions Between Service Brake Temperature, Lining Contact Pressure, and Vehicle Speed
,”
Proc. Inst. Mech. Eng. Part J.: J. Eng. Tribol.
.
61.
Eriksson
,
M.
,
Bergman
,
F.
, and
Jacobson
,
S.
,
2002
, “
On the Nature of Tribological Contact in Automotive Brakes
,”
Wear
,
252
(
1
), pp.
26
36
.
62.
Satapathy
,
B. K.
, and
Bijwe
,
J.
,
2004
, “
Performance of Friction Materials Based on Variation in Nature of Organic Fibres: Part I. Fade and Recovery Behaviour
,”
Wear
,
257
(
5
), pp.
573
584
.
You do not currently have access to this content.