Abstract

Numerical surface filtered generation is one of the main methods for generating numerical rough surfaces, but when faced with rough surfaces with waviness or large periodicity, traditional filtering methods cannot be implemented well. Because of this, the paper adopts the method of decomposing and synthesizing the maximum period and random part of the periodic rough surface. By decomposing the statistical parameters of the target surface, the statistical parameters of the ideal periodic surface and the random surface are generated, respectively, and then according to the surface parameters generate the surfaces and synthesize them. By comparing the statistical parameters and morphology of the synthesized surface with its actual surface, it can be found that this method can well achieve the generation of periodic rough surfaces, which is a good improvement to the original filter generation method.

References

1.
Gaul
,
L.
, and
Nitsche
,
R.
,
2001
, “
The Role of Friction in Mechanical Joints
,”
ASME Appl. Mech. Rev.
,
54
(
2
), pp.
93
106
. 10.1115/1.3097294
2.
Song
,
Y.
,
Hartwigsen
,
C. J.
,
McFarland
,
D. M.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2004
, “
Simulation of Dynamics of Beam Structures With Bolted Joints Using Adjusted Iwan Beam Elements
,”
J. Sound Vib.
,
273
(
1–2
), pp.
249
276
. 10.1016/S0022-460X(03)00499-1
3.
Padmanabhan
,
K. K.
, and
Murty
,
A. S. R.
,
1991
, “
Damping in Structural Joints Subjected to Tangential Loads
,”
Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.
,
205
(
2
), pp.
121
129
. 10.1243/PIME_PROC_1991_205_099_02
4.
Ibrahim
,
R. A.
, and
Pettit
,
C. L.
,
2005
, “
Uncertainties and Dynamic Problems of Bolted Joints and Other Fasteners
,”
J. Sound Vib.
,
279
(
3–5
), pp.
857
936
. 10.1016/j.jsv.2003.11.064
5.
Beards
,
C. F.
,
1982
, “
Damping in Structural Joints
,”
Shock Vibration Information Center, The Shock and Vibration Digest
,
14
(
6
), pp.
9
11
.
6.
Reizer
,
R.
,
2011
, “
Simulation of 3D Gaussian Surface Topography
,”
Wear
,
271
(
3–4
), pp.
539
543
. 10.1016/j.wear.2010.04.009
7.
Liao
,
D.
,
Shao
,
W.
,
Tang
,
J.
, and
Li
,
J.
,
2018
, “
An Improved Rough Surface Modeling Method Based on Linear Transformation Technique
,”
Tribol. Int.
,
119
, pp.
786
794
. 10.1016/j.triboint.2017.12.008
8.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
. 10.1115/1.2920588
9.
Borri
,
C.
, and
Paggi
,
M.
,
2016
, “
Topology Simulation and Contact Mechanics of Bifractal Rough Surfaces
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
230
(
11
), pp.
1345
1358
. 10.1177/1350650116641017
10.
Thielen
,
S.
,
Magyar
,
B.
, and
Piros
,
A.
,
2016
, “
Reconstruction of Three-Dimensional Turned Shaft Surfaces With Fractal Functions
,”
Tribol. Int.
,
95
, pp.
349
357
. 10.1016/j.triboint.2015.11.028
11.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Tech.
,
93
(
3
), pp.
398
407
. 10.1115/1.3451608
12.
Patir
,
N.
,
1978
, “
A Numerical Procedure for Random Generation of Rough Surfaces
,”
Wear
,
47
(
2
), pp.
263
277
. 10.1016/0043-1648(78)90157-6
13.
Watson
,
W.
, and
Spedding
,
T. A.
,
1982
, “
The Time Series Modelling of Non-Gaussian Engineering Processes
,”
Wear
,
83
(
2
), pp.
215
231
. 10.1016/0043-1648(82)90178-8
14.
Johnson
,
N. L.
,
1949
, “
Systems of Frequency Curves Generated by Methods of Translation
,”
Biometrika
,
36
(
1/2
), pp.
149
176
. 10.2307/2332539
15.
Hill
,
I. D.
,
Hill
,
R.
, and
Holder
,
R. L.
,
1976
, “
Algorithm AS 99: Fitting Johnson Curves by Moments
,”
J. Royal Stat. Soc., Series C (Appl. Stat.)
,
25
(
2
), pp.
180
189
.
16.
Bowman
,
K. O.
, and
Shenton
,
L. R.
,
1982
,
Johnson’s System of Distributions
,
Encyclopedia of Statistical Sciences, John Wiley & Sons, Inc.
,
New York
.
17.
Slifker
,
J. F.
, and
Shapiro
,
S. S.
,
1980
, “
The Johnson System: Selection and Parameter Estimation
,”
Technometrics
,
22
(
2
), pp.
239
246
. 10.1080/00401706.1980.10486139
18.
Chou
,
Y.
,
Polansky
,
A. M.
, and
Mason
,
R. L.
,
1998
, “
Transforming Non-Normal Data to Normality in Statistical Process Control
,”
J. Qual. Technol.
,
30
(
2
), pp.
133
141
. 10.1080/00224065.1998.11979832
19.
Pearson
,
K.
,
1895
, “
X. Contributions to the Mathematical Theory of Evolution—II. Skew Variation in Homogeneous Material
,”
Philos. Trans. Royal Soc. London (A)
,
186
, pp.
343
414
. 10.1098/rsta.1895.0010
20.
Hu
,
Y. Z.
, and
Tonder
,
K.
,
1992
, “
Simulation of 3-D Random Rough Surface by 2-D Digital Filter and Fourier Analysis
,”
Int. J. Mach. Tools Manuf.
,
32
(
1–2
), pp.
83
90
. 10.1016/0890-6955(92)90064-N
21.
Staufert
,
G.
,
1979
, “
Description of Roughness Profiles by Separating the Random and Periodic Components
,”
Wear
,
57
(
1
), pp.
185
194
. 10.1016/0043-1648(79)90151-0
22.
Bakolas
,
V.
,
2003
, “
Numerical Generation of Arbitrarily Oriented Non-Gaussian Three-Dimensional Rough Surfaces
,”
Wear
,
254
(
5–6
), pp.
546
554
. 10.1016/S0043-1648(03)00133-9
23.
Yang
,
G.
,
Li
,
B.
,
Wang
,
Y.
, and
Hong
,
J.
,
2014
, “
Numerical Simulation of 3D Rough Surfaces and Analysis of Interfacial Contact Characteristics
,”
CMES-Comput. Model. Eng. Sci.
,
103
(
4
), pp.
251
279
.
You do not currently have access to this content.