Abstract

The present work deals with the thermogasodynamic analysis of the segmented annular seal provided with Rayleigh pockets. The paper is a continuation of the work presented Arghir, M., and Mariot, A. (2017, “Theoretical Analysis of the Static Characteristics of the Carbon Segmented Seal,” ASME J. Tribol., 139(6), p. 062202.) where an isothermal model of the segmented annular seal was first presented. Each segment had three degrees-of-freedom, and its static position was obtained by solving the nonlinear equations of equilibrium. Thermal effects are now introduced by considering a simplified form of the energy equation in the thin gas film coupled with the three dimensional heat transfer in a segment of the seal and in the rotor. An efficient numerical algorithm is developed. A parametric study was performed for a segmented annular seal with pockets taken from the literature and operating with air. First, a test case proved the necessity of considering three degrees-of-freedom for the segment and not only its radial displacement. The parametric study was then performed for two different pocket depths, two pressure differences, and different rotation speeds. The results showed a non-uniform heating with larger temperatures at the leading edge of the segment where the minimal film thickness occurs. Heating is proportional to the pocket depth that lowers the lift force of the segment and to the pressure difference that closes the seal.

References

1.
Oike
,
M.
,
Nosaka
,
M.
,
Watanabe
,
Y.
,
Kikuchi
,
M.
, and
Kamijo
,
K.
,
1987
, “
Experimental Study on High-Pressure Gas Seals for a Liquid Oxygen Turbopump
,”
STLE Trans.
,
31
(
1
), pp.
91
97
. 10.1080/10402008808981803
2.
Oike
,
M.
,
Nosaka
,
M.
,
Kikuchi
,
M.
,
Watanabe
,
Y.
, and
Kamijo
,
K.
,
1990
, “
Study on a Carbon Segmented Circumferential Seal for a Liquid Oxygen Turbopump
,”
Proceedings of the Japan International Tribology Conference
,
Nagoya, Japan
,
Oct. 29–Nov. 1
, pp.
283
288
.
3.
Nosaka
,
M.
, and
Oike
,
M.
,
1990
, “
Shaft Seals of Turbopumps for Rockets
,”
Jpn. J. Tribol.
,
35
(
4
), pp.
411
421
.
4.
Oike
,
M.
,
Nosaka
,
M.
,
Kikuchi
,
M.
, and
Watanabe
,
Y.
,
1992
, “
Performance of a Segmented Circumferential Seal for a Liquid Oxygen Turbopump (Part 1): Sealing Performance
,”
Jpn. J. Tribol.
,
37
(
4
), pp.
511
523
.
5.
Oike
,
M.
,
Nagao
,
R.
,
Nosaka
,
M.
,
Kamijo
,
K.
, and
Jinnouchi
,
T.
,
1995
, “
Characteristics of a Shaft Seal System for the LE-7 Liquid Oxygen Turbopump
” AIAA 95-3102.
6.
Burcham
,
R. E.
,
1978
,
Liquid Rocket Engine Turbopump Rotating-Shaft Seal
,
NASA Technical Report Server, NASA-SP-8121, USA
.
7.
Burcham
,
R. E.
,
1983
,
High-Speed Cryogenic Self-Acting Shaft Seals for Liquid Rocket Turbopumps
,
NASA Technical Report Server, NASA-CR-168194, USA
.
8.
Arghir
,
M.
, and
Mariot
,
A.
,
2017
, “
Theoretical Analysis of the Static Characteristics of the Carbon Segmented Seal
,”
ASME J. Tribol.
,
139
(
6
), p.
062202
. 10.1115/1.4036272
9.
Mariot
,
A.
,
2015
, “
«Analyse Théorique et Expérimentale des Joints D’étanchéité à Bague Flottante et des Joints Rainurés Segmentés»
,”
Thèse de doctorat de l’Université de Poitiers.
10.
Arghir
,
M.
, and
Dahite
,
S.
,
2019
, “
Numerical Analysis of Lift Generation in A Radial Segmented Gas Seal
,”
GT2019-90492, ASME Turbo Expo
, Phoenix (AZ).
11.
Zhang
,
S.
,
Hassini
,
A.
, and
Arghir
,
M.
,
2018
, “
Accuracy and Grid Convergence of the Numerical Solution of the Energy Equation in Fluid Film Lubrication: Application to the 1D Slider
,”
Lubricants
,
6
(
4
), p.
95
. 10.3390/lubricants6040095
12.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid-Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
170
. 10.1016/S0020-7403(62)80038-1
13.
Mahner
,
M.
,
Lehn
,
A.
, and
Schweizer
,
B.
,
2016
, “
Thermogas- and Thermohydrodynamic Simulation of Thrust and Slider Bearings: Convergence and Efficiency of Different Reduction Approaches
,”
Tribol. Int.
,
93
(
Part B
), pp.
539
554
. 10.1016/j.triboint.2015.02.030
14.
Halton
,
J. H.
,
1958
,
Engineering
,
186
, 59.
15.
San Andrés
,
L.
,
2012
, Modern Lubrication Theory, Notes 10: Thermohydrodynamic Bulk-Flow Model in Thin Film Lubrication, http://hdl.handle.net/1969.1/93250, Accessed on July 2016.
16.
Lee
,
D.
, and
Kim
,
D.
,
2011
, “
Three-Dimensional Thermohydrodynamic Analysis of Rayleigh Step Airfoil Thrust Bearings With Radial Arranged Bump Foils
,”
Tribol. Trans.
,
54
(
3
), pp.
432
448
. 10.1080/10402004.2011.556314
17.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. Roy. Soc. Lond. A
,
295
(
1442
), pp.
300
319
. 10.1098/rspa.1966.0242
18.
Frêne
,
J.
,
Nicolas
,
D.
,
Degueurce
,
B.
,
Berthe
,
D.
, and
Godet
,
M.
,
1990
,
Lubrification hydrodynamique. Paliers et Butées
,
Editions Eyrolles, Collection de la direction des études et recherches d'électricité de France
, p.
488
.
19.
Constantinescu
,
V. N.
,
1995
,
Laminar Viscous Flow
,
Springer-Verlag
,
New-York
.
20.
IMSL by Perforce © 2020 Perforce Software, Inc., http://www.roguewave.com/products-services/imsl-numerical-libraries/fortran-libraries, Accessed May 18, 2020.
21.
Craveur
,
J.-C.
, and
Jetteur
,
P.
,
2010
,
Introduction à la Mécanique Non-Linéaire. Calcul des Structures par éléments Finis
,
Dunod
,
Paris
.
22.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), p.
380
. 10.2514/3.2874
23.
Dowson
,
D.
,
Hudson
,
J. D.
,
Hunter
,
B.
, and
March
,
C. N.
,
1966
, “
An Experimental Investigation of the Thermal Equilibrium of Steadily Loaded Journal Bearings
,”
Proceedings of the Institution of Mechanical Engineers
,
London, UK
,
Sept. 20–22
, Vol.
181
, no.
2
, pp.
70
80
.
24.
Feng
,
K.
, and
Kaneko
,
S.
,
2013
, “
A Thermohydrodynamic Sparse Mesh Model of Bump-Type Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022501
. 10.1115/1.4007728
25.
Boncompain
,
R.
,
Fillon
,
M.
, and
Frêne
,
J.
,
1968
, “
Analysis of Thermal Effects in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
108
(
2
), pp.
219
224
. 10.1115/1.3261166
26.
Lebeck
,
A. O.
,
1991
,
Principles and Design of Mechanical Face Seals
,
John Wiley & Sons
, New York.
You do not currently have access to this content.