Abstract

For high-speed motorized spindle bearing, temperature rise is the primary factor that restricts the maximum speed of spindle and affects the stability of system. This paper addresses the lubrication and cooling of spindle bearing by exploiting the precise oil control and high cooling efficiency of oil–air lubrication. Enlightened by the bearing tribology and two-phase flow theory, a numerical model of oil–air two-phase flow heat transfer inside bearing cavity is created, with which the effects of operating condition and nozzle structure parameters on the temperature rise are studied. As the results show, with the elevation in speed, the heat generation increases rapidly, and despite the somewhat enhanced heat transfer effect, the temperature still tends to rise. Given the higher volume fraction of air than oil in the two-phase flow, the temperature rise of bearing is suppressed greatly as the air inlet velocity increases, revealing a remarkable cooling effect. When a single nozzle is used, the bearing temperature increases from the inlet to both sides, which peaks on the opposite side of the inlet. In case multiple evenly distributed nozzles are used, the high-temperature range narrows gradually, and the temperature distributions in the inner and outer rings tend to be consistent. With the increase in the nozzle aspect ratio, the airflow velocity drops evidently, which affects the heat dissipation, thereby resulting in an aggravated temperature rise. Finally, the simulation analysis is verified through experimentation, which provides a theoretical basis for selecting optimal parameters for the oil–air lubrication of high-speed bearing.

References

1.
Chao
,
J.
,
Bo
,
W.
, and
Hu
,
Y.
,
2012
, “
Heat Generation Modeling of Ball Bearing Based on Internal Load Distribution
,”
Tribol Int.
,
45
(
1
), pp.
8
15
. 10.1016/j.triboint.2011.08.019
2.
Zahedi
,
A.
, and
Movahhedy
,
M. R.
,
2012
, “
Thermo-mechanical Modeling of High Speed Spindles
,”
Sci. Iran.
,
19
(
2
), pp.
282
293
. 10.1016/j.scient.2012.01.004
3.
Dudorov
,
E. A.
,
Ruzanov
,
A. I.
, and
Zhirkin
,
Y. V.
,
2009
, “
Introducing an Oil-Air Lubrication System at a Continuous-Casting Machine
,”
Steel Transl.
,
39
(
4
), pp.
351
354
. 10.3103/S0967091209040160
4.
Tong
,
B.
,
Wang
,
G.
, and
Sun
,
X.
,
2015
, “
Investigation of the Fluid-Solid Thermal Coupling for Rolling Bearing Under Oil-Air Lubrication
,”
Adv. Mech. Eng.
,
7
(
2
), p.
835036
. 10.1155/2014/835036
5.
Hu
,
J.
,
Wu
,
W.
,
Wu
,
M.
, and
Yuan
,
S.
,
2014
, “
Numerical Investigation of the Air-Oil Two-Phase Flow Inside an Oil-Jet Lubricated Ball Bearing
,”
Int. J. Heat Mass Transfer
,
68
(
1
), pp.
85
93
. 10.1016/j.ijheatmasstransfer.2013.09.013
6.
Li
,
S. S.
,
Zuo
,
T. T.
,
Hu
,
Z. H.
,
Mao
,
H. W.
,
Chen
,
P.
, and
Chen
,
X. Y.
,
2009
, “
Analysis of Internal State Performances of the Electric Spindle Bearing Running at an Extreme Ultra-High-Speed
,”
Mater. Sci. Forum
,
628–629
(
8
), pp.
83
88
.
7.
Gloeckner
,
P.
, and
Ebert
,
F. J.
,
2010
, “
Micro-sliding in High-Speed Aircraft Engine Ball Bearing
,”
Tribol Trans.
,
53
(
3
), pp.
369
375
. 10.1080/10402000903312364
8.
Zhou
,
H. L.
,
Luo
,
G. H.
,
Chen
,
G.
, and
Wang
,
F.
,
2013
, “
Analysis of the Nonlinear Dynamic Response of a Rotor Supported on Ball Bearing With Floating-Ring Squeeze Film Dampers
,”
Mech. Mach. Theory.
,
59
(
1
), pp.
65
77
. 10.1016/j.mechmachtheory.2012.09.002
9.
Harris
,
T. A.
,
Barnsby
,
R. M.
, and
Kotzalas
,
M. N.
,
2001
, “
A Method to Calculate Frictional Effects in Oil-Lubricated Ball Bearing
,”
Tribol Trans.
,
44
(
4
), pp.
704
708
. 10.1080/10402000108982514
10.
Yan
,
K.
,
Wang
,
N.
,
Zhai
,
Q.
,
Zhu
,
Y.
,
Zhang
,
J.
, and
Niu
,
Q.
,
2015
, “
Theoretical and Experimental Investigation on the Thermal Characteristics of Double-Row Tapered Roller Bearing of High Speed Locomotive
,”
Int. J. Heat Mass Transfer
,
84
(
5
), pp.
1119
1130
. 10.1016/j.ijheatmasstransfer.2014.11.057
11.
Zhou
,
X.
,
Zhang
,
H.
,
Hao
,
X.
,
Liao
,
X.
, and
Han
,
Q.
,
2019
, “
Investigation on Thermal Behavior and Temperature Distribution of Bearing Inner and Outer Rings
,”
Tribol Int.
,
130
(
2
), pp.
289
298
. 10.1016/j.triboint.2018.09.031
12.
Ramesh
,
K.
,
Yeo
,
S. H.
,
Zhong
,
Z. W.
, and
Yui
,
A.
,
2002
, “
Ultra-High-Speed Thermal Behavior of a Rolling Element Upon Using Oil–Air Mist Lubrication
,”
J. Mater. Process Tech.
,
127
(
2
), pp.
191
198
.
13.
Ran
,
Z.
,
Chao
,
W.
,
Wei
,
W.
, and
Yuan
,
S.
,
2015
, “
CFD Investigation on the Influence of jet Velocity of Oil-Jet Lubricated Ball Bearing on the Characteristics of Lubrication Flow Field
,”
The 8th International Conference on Fluid Power and Mechatronics (FPM)
,
Harbin, China
, pp.
1324
1328
.
14.
Sun
,
Q. G.
,
Wang
,
Y. F.
,
Wang
,
Y.
, and
Lv
,
H. B.
,
2013
, “
Comparing of Temperatures of Rolling Bearing Under the Oil-Air Lubrication to the Spray Lubrication
,”
Appl. Mech. Mater.
,
395–396
(
9
), pp.
763
768
. 10.4028/www.scientific.net/AMM.395-396.763
15.
Zheng
,
D. X.
,
Chen
,
W. F.
, and
Li
,
M. M.
,
2018
, “
An Optimized Thermal Network Model to Estimate Thermal Performances on a Pair of Angular Contact Ball Bearing Under Oil-Air Lubrication
,”
Appl. Therm. Eng.
,
131
(
2
), pp.
328
339
. 10.1016/j.applthermaleng.2017.12.019
16.
Zheng
,
D. X.
, and
Chen
,
W. F.
,
2017
, “
Thermal Performances on Angular Contact Ball Bearing of High-Speed Spindle Considering Structural Constraints Under Oil-Air Lubrication
,”
Tribol Int.
,
109
(
5
), pp.
593
601
. 10.1016/j.triboint.2017.01.035
17.
Takabi
,
J.
, and
Khonsari
,
M. M.
,
2013
, “
Experimental Testing and Thermal Analysis of Ball Bearing
,”
Tribol Int.
,
60
(
4
), pp.
93
103
. 10.1016/j.triboint.2012.10.009
18.
Wang
,
B. M.
, and
Chang
,
X.
,
2019
, “
Temperature Rise Prediction of Oil-Air Lubricated Angular Contact Ball Bearing Using Artificial Neural Network
,”
Recent Pat. Mech. Eng.
,
12
(
3
), pp.
248
261
.
19.
Jiang
,
S. Y.
, and
Mao
,
H. B.
,
2011
, “
Investigation of the High Speed Rolling Bearing Temperature Rise With Oil-Air Lubrication
,”
ASME J. Tribol.
,
133
(
2
), pp.
655
664
. 10.1115/1.4003501
20.
Jeng
,
Y. R.
, and
Huan
,
P. Y.
,
2000
, “
Temperature Rise of Hybrid Ceramic and Steel Ball Bearing With Oil-Mist Lubrication
,”
Lubr. Eng.
,
56
(
12
), pp.
18
23
.
21.
Jeng
,
Y. R.
, and
Gao
,
C. C.
,
2001
, “
Investigation of the Ball-Bearing Temperature Rise Under an Oil-Air Lubrication System
,”
Proc. Inst. Mech. Eng., Part J
,
215
(
2
), pp.
139
148
.
22.
Wu
,
C. H.
, and
Kung
,
Y. T.
,
2005
, “
A Parametric Study on Oil/Air Lubrication of a High-Speed Spindle
,”
Precis Eng.
,
29
(
2
), pp.
162
167
. 10.1016/j.precisioneng.2004.06.005
23.
Yeau Ren
,
J.
, and
Ling
,
C. C.
,
1998
, “Configuration of Lubrication Nozzle in High Speed Rolling-Element Bearing,” US 5848845, pp.
12
15
.
24.
Liu
,
C.
,
Zhang
,
J. H.
,
Yan
,
K.
,
Zhai
,
Q.
, and
Zeng
,
Q. F.
,
2015
, “
Influence of Nozzle Structure on the Two-Phase Flow Characteristic in Oil-air Lubrication System for High-Speed Rolling Bearing
,”
Lubr Eng.
,
40
(
1
), pp.
28
31
.
25.
Liu
,
M. Y.
,
Guo
,
F.
,
Jiao
,
Y. H.
,
Peng
,
S. L.
, and
Wang
,
X.
,
2018
, “
A Novel Guide-Type Nozzle for Oil-Air Lubrications
,”
China Mech. Eng.
,
491
(
11
), pp.
28
32
.
26.
Lacey
,
S. J.
,
1997
, “
Performance Characteristics of Fixed Preload Large Bore Angular Contact Ball Bearing for Machine Tool
,”
Motion Control
,
2
(
1
), pp.
36
42
.
27.
Wan
,
C. S.
,
1987
,
Rolling Bearing Analysis Method
,
Machinery Industry Press
,
Beijing
.
28.
Bossmanns
,
B.
, and
Tu
,
J. F.
,
1999
, “
A Thermal Model for High Speed Motorized Spindles
,”
Int. J. Mach. Tool Manu.
,
39
(
9
), pp.
1345
1366
. 10.1016/S0890-6955(99)00005-X
29.
Liu
,
H. B.
,
Wang
,
H. Y.
,
Zhang
,
L.
,
Shi
,
Y. S.
, and
Liu
,
G. P.
,
2016
, “
Analysis on Penetration Mechanism of Oil Jet Lubrication for High Speed Rolling Bearing
,”
J. Aerosp. Power
,
31
(
7
), pp.
1766
1776
.
30.
Chen
,
J. S.
, and
Hsu
,
W. Y.
, “
Characterizations and Models for the Thermal Growth of a Motorized High Speed Spindle
,”
Int.. J. Mach. Tool. Manu.
,
43
(
11
), pp.
1163
1170
. 10.1016/S0890-6955(03)00103-2
You do not currently have access to this content.