Abstract

Enhancement in fatigue life of the rolling-element bearing has been captivating since years. The hollow concept had been triggered years back; however, it could not catch widespread applications due to catastrophic failure. Thus, any novel concept of the rolling element must be assessed for its strength against catastrophic failure before competing for better fatigue life on field with other alternatives. This paper commences with the outcomes of the comparative assessment of the experimental evaluation of strength against fracture under static loads for layered and hollow rollers with solid rollers, which devise the requirements for new concepts. The end hemispherical cavity (EHC) roller concept, being a proper geometrical blending of solidity and hollowness, prospects to overcome the strength concern along with a considerable reduction in contact stresses. Thus, experimental investigation was conducted with full-bearing fracture tests and individual roller specimens fracture tests for five variants: EHC, solid, layered, 61H, and 37H (hollow rollers with 61% and 37% hollowness, respectively). The simulations were carried out to support the outcomes of experimental trials. The experimental results with full-bearing samples and individual roller specimens demonstrated ranking as follows: EHC, 37H, layered, and 61H. The EHC roller concept was substantiated to be stronger than hollow and layered rollers besides prompting appreciable reduction in contact stresses compared with the solid roller. The simulation results agreed well with experimental results of fracture tests, and the recommendations from findings of failure theories (maximum normal stress, distortion energy, and maximum shear stress) adopted for estimating fracture load for rollers have been discussed.

References

1.
Demirhan
,
N.
, and
Kanber
,
B.
,
2008
, “
Stress and Displacement Distributions on Cylindrical Roller Bearing Rings Using FEM
,”
Mech. Based Des. Struct. Mach.
,
36
(
1
), pp.
86
102
. 10.1080/15397730701842537
2.
Kumar
,
K. S.
,
Tiwari
,
R.
, and
Reddy
,
R. S.
,
2008
, “
Development of an Optimum Design Methodology of Cylindrical Roller Bearings Using Genetic Algorithms
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
9
(
6
), pp.
321
341
. 10.1080/15502280802362995
3.
Chen
,
G.
, and
Wen
,
J.
,
2015
, “
Effects of Size and Raceway Hardness on the Fatigue Life of Large Rolling Bearing
,”
J. Mech. Sci. Technol.
,
29
(
9
), pp.
3873
3883
. 10.1007/s12206-015-0833-3
4.
Yakout
,
M.
,
Nassef
,
M. G. A.
, and
Backar
,
S.
,
2019
, “
Effect of Clearances in Rolling Element Bearings on Their Dynamic Performance, Quality and Operating Life
,”
J. Mech. Sci. Technol.
,
33
(
5
), pp.
2037
2042
. 10.1007/s12206-019-0406-y
5.
Tong
,
V.-C.
, and
Hong
,
S.-W.
,
2017
, “
Statistical Investigation Into the Effects of Distributed Roller Diameter Error on the Fatigue Life of Tapered Roller Bearings
,”
J. Mech. Sci. Technol.
,
31
(
12
), pp.
5977
5985
. 10.1007/s12206-017-1142-9
6.
Oswald
,
F. B.
,
Zaretsky
,
E. V.
, and
Poplawski
,
J. V.
,
2012
, “
Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings
,”
Tribol. Trans.
,
55
(
2
), pp.
245
265
. 10.1080/10402004.2011.639050
7.
Zaretsky
,
E. V.
,
Vlcek
,
B. L.
, and
Hendricks
,
R. C.
,
2005
, “
Effect of Silicon Nitride Balls and Rollers on Rolling Bearing Life
,”
Tribol. Trans.
,
48
(
3
), pp.
425
435
. 10.1080/05698190500225011
8.
Miller
,
J. R.
, and
Akamatsu
,
Y.
,
1997
, “
Effects of Low Speed on Roller Bearing Fatigue Life
,”
Tribol. Trans.
,
40
(
1
), pp.
129
137
. 10.1080/10402009708983638
9.
Karapetyan
,
D. E.
,
Lukin
,
I. P.
, and
Shemyakin
,
E. V.
,
2014
, “
Extending the Life of Roller Bearings
,”
Russ. Eng. Res.
,
34
(
1
), pp.
16
19
. 10.3103/S1068798X14010092
10.
Oswald
,
F. B.
,
Zaretsky
,
E. V.
, and
Poplawski
,
J. V.
,
2014
, “
Effect of Roller Geometry on Roller Bearing Load–Life Relation
,”
Tribol. Trans.
,
57
(
5
), pp.
928
938
. 10.1080/10402004.2014.927545
11.
Scott
,
D.
,
1976
, “
Hollow Rolling Elements
,”
Tribol. Int.
,
9
(
6
), pp.
261
264
. 10.1016/0301-679X(76)90015-3
12.
Harris
,
T. A.
, and
Aaronson
,
S. F.
,
1967
, “
An Analytical Investigation of Cylindrical Roller Bearings Having Annular Rollers
,”
ASLE Trans.
,
10
(
3
), pp.
235
242
. 10.1080/05698196708972183
13.
Liu
,
J.
, and
Shao
,
Y.
,
2018
, “
An Analytical Dynamic Model of a Hollow Cylindrical Roller Bearing
,”
ASME J. Tribol.
,
140
(
6
), p.
061403
. 10.1115/1.4040382
14.
Pasdari
,
M.
, and
Gentle
,
C. R.
,
1986
, “
Computer Modelling of a Deep-Groove Ball-Bearing With Hollow Balls
,”
Wear
,
111
(
1
), pp.
101
114
. 10.1016/0043-1648(86)90078-5
15.
Murthy
,
C. C.
, and
Rao
,
A. R.
,
1983
, “
Mechanics and Behaviour of Hollow Cylindrical Members in Rolling Contact
,”
Wear
,
87
(
3
), pp.
287
296
. 10.1016/0043-1648(83)90132-1
16.
Jadayil
,
W. M. A.
, and
Jaber
,
N. M.
,
2010
, “
Numerical Prediction of Optimum Hollowness and Material of Hollow Rollers Under Combined Loading
,”
Mater. Des.
,
31
(
3
), pp.
1490
1496
. 10.1016/j.matdes.2009.08.024
17.
Liu
,
Y.
,
2018
, “
A Novel Method to Compute the Elastic Approach of a Hollow Roller
,”
ASME J. Tribol.
,
140
(
4
), p.
044501
. 10.1115/1.4038952
18.
Han
,
C.
,
Yu
,
C.
,
Li
,
Y.
,
Yan
,
J.
, and
Zhang
,
J.
,
2015
, “
Mechanical Performance Analysis of Hollow Cylindrical Roller Bearing of Cone Bit by FEM
,”
Petroleum
,
1
(
4
), pp.
388
396
. 10.1016/j.petlm.2015.10.012
19.
Yao
,
Q.
,
Yang
,
W.
,
Yu
,
D.
, and
Yu
,
J.
,
2013
, “
Bending Stress of Rolling Element in Elastic Composite Cylindrical Roller Bearing
,”
J. Cent. South Univ.
,
20
(
12
), pp.
3437
3444
. 10.1007/s11771-013-1868-1
20.
Solanki
,
M. T.
, and
Vakharia
,
D.
,
2018
, “
Development of a Mathematical Model to Determine Optimum Hollowness in Layered Cylindrical Hollow Rolling Element Using FE Analysis
,”
Ind. Lubr. Tribol.
,
70
(
4
), pp.
733
745
. 10.1108/ILT-09-2017-0252
21.
Bamberger
,
E. N.
, and
Parker
,
R. J.
,
1978
, “
Effect of Wall Thickness and Material on Flexural Fatigue of Hollow Rolling Elements
,”
ASME J. Tribol.
,
100
(
1
), pp.
39
46
. 10.1115/1.3453111
23.
Zaretsky
,
E. V.
,
Poplawski
,
J. V.
, and
Peters
,
S. M.
,
1996
, “
Comparison of Life Theories for Rolling-Element Bearings
,”
Tribol. Trans.
,
39
(
2
), pp.
237
248
. 10.1080/10402009608983525
24.
Guo
,
Y.
, and
Liu
,
C.
,
2002
, “
Mechanical Properties of Hardened AISI 52100 Steel in Hard Machining Processes
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
1
9
. 10.1115/1.1413775
25.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Advanced Concepts of Bearing Technology
,
CRC Press
,
Boca Raton, FL
.
26.
Shigley
,
J. E.
,
Mischke
,
C. R.
,
Budnyas
,
R. G.
, and
Nisbett
,
K. J.
,
2008
,
Shigley’s Mechanical Engineering Design (SIE) 8E
,
McGraw-Hill Education (India) Pvt Limited
,
India
.
27.
Londhe
,
N. D.
,
Arakere
,
N. K.
, and
Subhash
,
G.
,
2017
, “
Extended Hertz Theory of Contact Mechanics for Case-Hardened Steels With Implications for Bearing Fatigue Life
,”
ASME J. Tribol.
,
140
(
2
), p.
021401
. 10.1115/1.4037359
You do not currently have access to this content.