Abstract

In this paper, short carbon fiber-reinforced nylon (SCFRN) composites were fabricated using the fused deposition modeling (FDM) technology. In particular, different surface textures, namely convex squares and triangles, were created by using the printing method. It was found that fiber reinforcements could effectively enhance the load-carry capacity of the printed polymeric materials. Moreover, the tribological performance of SCFRN can be further improved with the surface textures. Microscopy observations revealed that the surface textures are particularly beneficial for the wear reduction by collecting hard wear debris such as broken fibers. The work has demonstrated that 3D printing technology has great potential for developing new wear-resistant engineering materials by controlling and creating desirable compositions and geometric structures/textures simultaneously.

References

1.
Parandoush
,
P.
, and
Lin
,
D.
,
2017
, “
A Review on Additive Manufacturing of Polymer-Fiber Composites
,”
Compos. Struct.
,
182
, pp.
36
53
. 10.1016/j.compstruct.2017.08.088
2.
Dickson
,
A. N.
,
Barry
,
J. N.
,
McDonnell
,
K. A.
, and
Dowling
,
D. P.
,
2017
, “
Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing
,”
Addit. Manuf.
,
16
, pp.
146
152
. 10.1016/j.addma.2017.06.004
3.
Zhang
,
Y.
,
Purssell
,
C.
,
Mao
,
K.
, and
Leigh
,
S.
,
2020
, “
A Physical Investigation of Wear and Thermal Characteristics of 3D Printed Nylon Spur Gears
,”
Tribol. Int.
,
141
, p.
105953
. 10.1016/j.triboint.2019.105953
4.
Gbadeyan
,
O. J.
, and
Kanny
,
K.
,
2018
, “
Tribological Behaviors of Polymer-Based Hybrid Nanocomposite Brake Pad
,”
ASME J. Tribol.
,
140
(
3
), p.
032003
. 10.1115/1.4038679
5.
Sommer
,
A. C.
, and
Blumenthal
,
E. Z.
,
2019
, “
Implementations of 3D Printing in Ophthalmology
,”
Graefe's Arch. Clin. Exp. Ophthalmol.
,
257
(
9
), pp.
1815
1822
. 10.1007/s00417-019-04312-3
6.
Ghilan
,
A.
,
Chiriac
,
A. P.
,
Nita
,
L. E.
,
Rusu
,
A. G.
,
Neamth
,
I.
, and
Chiriac
,
V. M.
,
2020
, “
Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges
,”
J. Polym. Environ.
,
28
(
5
), pp.
1345
1367
. 10.1007/s10924-020-01722-x
7.
Sang
,
L.
,
Han
,
S.
,
Li
,
Z.
,
Yang
,
X.
, and
Hou
,
W.
,
2019
, “
Development of Short Basalt Fiber Reinforced Polylactide Composites and Their Feasible Evaluation for 3D Printing Applications
,”
Composites, Part B
,
164
, pp.
629
639
. 10.1016/j.compositesb.2019.01.085
8.
Heidari-Rarani
,
M.
,
Rafiee-Afarani
,
M.
, and
Zahedi
,
A. M.
,
2019
, “
Mechanical Characterization of FDM 3D Printing of Continuous Carbon Fiber Reinforced PLA Composites
,”
Composites, Part B
,
175
, p.
107147
. 10.1016/j.compositesb.2019.107147
9.
Carneiro
,
O. S.
,
Silva
,
A. F.
, and
Gomes
,
R.
,
2015
, “
Fused Deposition Modeling With Polypropylene
,”
Mater. Des.
,
83
, pp.
768
776
. 10.1016/j.matdes.2015.06.053
10.
EI-Sayed
,
A. A.
,
EI-Sherbiny
,
M. G.
,
Abo-EI-Ezz
,
A. S.
, and
Aggag
,
G. A.
,
1995
, “
Friction and Wear Properties of Polymeric Composite Materials for Bearing Applications
,”
Wear
,
184
(
1
), p.
4553
. 10.1016/0043-1648(94)06546-2
11.
Lee
,
Y.-J.
,
Lee
,
K.-H.
, and
Lee
,
C.-H.
,
2018
, “
Self-Lubricating and Friction Performance of a Three-Dimensional-Printed Journal Bearing
,”
ASME J. Tribol.
,
140
(
5
), p.
054501
. 10.1115/1.4039995
12.
Prusinowski
,
A.
, and
Kaczyński
,
R.
,
2020
, “
Investigation of Tribological and Strength Properties of ABS/CF Fibrous Composites Formed in Fused Deposition Modeling
,”
J. Friction Wear
,
41
(
4
), pp.
318
325
. 10.3103/S106836662004011X
13.
Prusinowski
,
A.
, and
Kaczyński
,
R.
,
2020
, “
Tribological Behaviour of Additively Manufactured Fiber-Reinforced Thermoplastic Composites in Various Environments
,”
Polymers
,
12
(
7
), p.
1551
. 10.3390/polym12071551
14.
Peng
,
X.
,
Zhang
,
M.
,
Guo
,
Z.
,
Sang
,
L.
, and
Hou
,
W.
,
2020
, “
Investigation of Processing Parameters on Tensile Performance for FDM-Printed Carbon Fiber Reinforced Polyamide 6 Composites
,”
Compos. Commun.
,
22
, p.
100478
. 10.1016/j.coco.2020.100478
15.
Luo
,
M.
,
Tian
,
X.
,
Shang
,
J.
,
Yun
,
J.
, and
Zhu
,
W.
,
2020
, “
Bi-Scale Interfacial Bond Behaviors of CCF/PEEK Composites by Plasma-Laser Cooperatively Assisted 3D Printing Process
,”
Composites, Part A
,
131
, p.
105812
. 10.1016/j.compositesa.2020.105812
16.
Zhang
,
J.
,
Zhou
,
Z.
,
Zhang
,
F.
,
Tan
,
Y.
,
Tu
,
Y.
, and
Yang
,
B.
,
2020
, “
Performance of 3D-Printed Continuous-Carbon-Fiber-Reinforced Plastics with Pressure
,”
Materials
,
13
(
2
), p.
471
. 10.3390/ma13020471
17.
Hamilton
,
D. B.
,
Walowit
,
J. A.
, and
Allen
,
C. M.
,
1966
, “
A Theory of Lubrication by Microirregularities
,”
J. Fluid Eng.
,
88
(
1
), pp.
177
185
.
18.
Braun
,
D.
,
Greiner
,
C.
,
Schneider
,
J.
, and
Gumbsch
,
P.
,
2014
, “
Efficiency of Laser Surface Texturing in the Reduction of Friction Under Mixed Lubrication
,”
Tribol. Int.
,
77
, pp.
142
147
. 10.1016/j.triboint.2014.04.012
19.
Zeng
,
S.
,
Li
,
J.
,
Zhou
,
N.
,
Zhang
,
J.
,
Yu
,
A.
, and
He
,
H.
,
2020
, “
Improving the Wear Resistance of PTFE-Based Friction Material Used in Ultrasonic Motors by Laser Surface Texturing
,”
Tribol. Int.
,
141
, p.
105910
. 10.1016/j.triboint.2019.105910
20.
Vilhena
,
L. M.
, and
Ramalho
,
A.
,
2019
, “
Friction Behavior of Human Skin Rubbing Against Different Textured Polymeric Materials Obtained by a 3D Printing Microfabrication Technique
,”
Tribol. Trans.
,
62
(
2
), pp.
324
336
. 10.1080/10402004.2018.1543782
21.
Qi
,
X.
,
Wang
,
H.
,
Dong
,
Y.
,
Fan
,
B.
,
Zhang
,
W.
,
Zhang
,
Y.
,
Ma
,
J.
, and
Zhou
,
Y.
,
2019
, “
Experimental Analysis of the Effects of Laser Surface Texturing on Tribological Properties of PTFE/Kevlar Fabric Composite Weave Structures
,”
Tribol. Int.
,
135
, pp.
104
111
. 10.1016/j.triboint.2019.02.036
22.
Lu
,
P.
,
Wood
,
R. J. K.
,
Gee
,
M. G.
,
Wang
,
L.
, and
Pfleging
,
W.
,
2018
, “
A Novel Surface Texture Shape for Directional Friction Control
,”
Tribology Letter
,
66
(
1
), p.
51
. 10.1007/s11249-018-0995-0
23.
Wang
,
M.
,
Wang
,
X.
,
Liu
,
J.
,
Wei
,
J.
,
Shen
,
Z.
, and
Wang
,
Y.
,
2019
, “
3-Dimensional ink Printing of Friction-Reducing Surface Textures From Copper Nanoparticles
,”
Surf. Coat. Technol.
,
364
, pp.
57
62
. 10.1016/j.surfcoat.2019.02.080
24.
Pascual-González
,
C.
,
Iragi
,
M.
,
Fernández
,
A.
,
Fernández-Blázquez
,
J. P.
,
Aretxabaleta
,
L.
, and
Lopes
,
C. S.
,
2020
, “
An Approach to Analyse the Factors Behind the Micromechanical Response of 3D-Printed Composites
,”
Composites, Part B
,
186
, p.
117820
. 10.1016/j.compositesb.2020.107820
25.
Markforged
,
2020
, “Datasheet,” Accessed October 10, 2020, https://markforged.com/datasheets
26.
Chang
,
L.
,
Zhang
,
Z.
,
Breidt
,
C.
, and
Friedrich
,
K.
,
2005
, “
Tribological Properties of Epoxy Nanocomposites: I. Enhancement of the Wear Resistance by Nano-TiO2 Particles
,”
Wear
,
258
(
1–4
), pp.
141
148
. 10.1016/j.wear.2004.09.005
27.
Wang
,
X.
,
Jiang
,
M.
,
Zhou
,
Z.
,
Gou
,
J.
, and
Hui
,
D.
,
2017
, “
3D Printing of Polymer Matrix Composites: A Review and Prospective
,”
Composites, Part B
,
110
, pp.
442
458
. 10.1016/j.compositesb.2016.11.034
28.
Wickramasinghe
,
S.
,
Do
,
T.
, and
Tran
,
P.
,
2020
, “
FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments
,”
Polymers
,
12
(
7
), p.
1529
. 10.3390/polym12071529
29.
Blok
,
L. G.
,
Longana
,
M. L.
,
Yu
,
H.
, and
Woods
,
B. K. S.
,
2018
, “
An Investigation Into 3D Printing of Fibre Reinforced Thermoplastic Composites
,”
Addit. Manuf.
,
22
, pp.
176
186
. 10.1016/j.addma.2018.04.039
30.
Bahadur
,
S.
,
2000
, “
The Development of Transfer Layers and Their Role in Polymer Tribology
,”
Wear
,
245
(
1–2
), pp.
92
99
. 10.1016/S0043-1648(00)00469-5
31.
Friedrich
,
K.
,
2018
, “
Polymer Composites for Tribological Applications
,”
Adv. Ind. Eng. Polym. Res.
,
1
(
1
), pp.
3
39
. 10.1016/j.aiepr.2018.05.001
32.
Shen
,
H.
,
Lavoie
,
A. J.
, and
Nutt
,
S. R.
,
2003
, “
Enhanced Peel Resistance of Fiber Reinforced Phenolic Foams
,”
Composites, Part A
,
34
(
10
), pp.
941
948
. 10.1016/S1359-835X(03)00210-0
33.
Chang
,
L.
, and
Friedrich
,
K.
,
2010
, “
Enhancement Effect of Nanoparticles on the Sliding Wear of Short Fiber-Reinforced Polymer Composites: A Critical Discussion of Wear Mechanisms
,”
Tribol. Int.
,
43
(
12
), pp.
2355
2364
. 10.1016/j.triboint.2010.08.011
34.
Bijwe
,
J.
,
Rajesh
,
J. J.
,
Jeyakumar
,
A.
,
Ghosh
,
A.
, and
Tewari
,
U. S.
,
2000
, “
Influence of Solid Lubricants and Fibre Reinforcement on Wear Behaviour of Polyethersulphone
,”
Tribol. Int.
,
33
(
10
), pp.
697
706
. 10.1016/S0301-679X(00)00104-3
35.
Li
,
D.-X.
,
You
,
Y.-L.
,
Deng
,
X.
,
Li
,
W.-J.
, and
Xie
,
Y.
,
2013
, “
Tribological Properties of Solid Lubricants Filled Glass Fiber Reinforced Polyamide 6 Composites
,”
Mater. Des.
,
46
, pp.
809
815
. 10.1016/j.matdes.2012.11.011
36.
Byett
,
J. H.
, and
Allen
,
C.
,
1992
, “
Dry Sliding Wear Behaviour of Polyamide 66 and Polycarbonate Composites
,”
Tribol. Int.
,
25
(
4
), pp.
237
246
. 10.1016/0301-679X(92)90061-Q
37.
Chang
,
L.
,
Zhang
,
Z.
,
Zhang
,
H.
, and
Schlarb
,
A. K.
,
2006
, “
On the Sliding Wear of Nanoparticle Filled Polyamide 66 Composites
,”
Compos. Sci. Technol.
,
66
(
16
), pp.
3188
3198
. 10.1016/j.compscitech.2005.02.021
You do not currently have access to this content.