Abstract

This article presents the effects of carriage flexibility on the friction force in linear ball guides, which includes hydrodynamic rolling friction, elastic hysteresis friction, slip friction, and drag friction. To this end, we developed a computational model for the friction force in linear ball guides that accounts for the carriage flexibility. The model was validated through experiments, and the results prove that it provides more accurate friction-force estimates than the conventional model under the assumption of a rigid carriage. Subsequently, we examined the effects of external load, preload, and speed on the friction force. Among several friction components, hydrodynamic rolling friction makes a major contribution to the total friction force. Ball contact loads, which significantly vary with carriage flexibility, were found to influence the hydrodynamic rolling, elastic hysteresis, and slip friction forces. The proposed model considering carriage flexibility in linear ball guides is expected to find use in the design and operation of linear-ball-guide systems.

References

1.
Ohta
,
H.
,
Tsuruoka
,
T.
,
Fujinami
,
Y.
, and
Kato
,
S.
,
2016
, “
Effects of Grease Characteristics on Sound and Vibration of a Linear-Guideway Type Recirculating Ball Bearing
,”
ASME J. Tribol
,
138
(
2
), p.
021101
.
2.
Zou
,
H. T.
, and
Wang
,
B. L.
,
2015
, “
Investigation of the Contact Stiffness Variation of Linear Rolling Guides Due to the Effects of Friction and Wear During Operation
,”
Tribol. Int.
,
92
, pp.
472
484
.
3.
Lin
,
C. Y.
,
Hung
,
J. P.
, and
Lo
,
T. L.
,
2010
, “
Effect of Preload of Linear Guides on Dynamic Characteristics of a Vertical Column-Spindle System
,”
Int. J. Mach. Tools Manuf.
,
50
(
8
), pp.
741
746
.
4.
Zhang
,
G. P.
,
Huang
,
Y. M.
,
Shi
,
W. H.
, and
Fu
,
W. P.
,
2003
, “
Predicting Dynamic Behaviors of a Whole Machine Tool Structure Based on Computer-Aided Engineering
,”
Int. J. Mach. Tools Manuf.
,
43
(
7
), pp.
699
706
.
5.
Aihara
,
S.
,
1987
, “
A new Running Torque Formula for Tapered Roller Bearings Under Axial Load
,”
ASME J. Tribol.
,
109
(
3
), pp.
471
477
.
6.
Houpert
,
L.
,
2002
, “
Ball Bearing and Tapered Roller Bearing Torque: Analytical, Numerical and Experiment Results
,”
Tribol. Trans.
,
45
(
3
), pp.
345
353
.
7.
Ohta
,
H.
, and
Kanatsu
,
M.
,
2005
, “
Running Torque of Ball Bearings with Polymer Lubricant (Effect of the Enclosure Form of Polymer Lubricant)
,”
Tribol. Trans.
,
48
(
4
), pp.
484
491
.
8.
Kim
,
K. S.
,
Lee
,
D. W.
,
Lee
,
S. M.
, and
Hwang
,
J. H.
,
2015
, “
A Numerical Approach to Determine the Frictional Torque and Temperature of an Angular Contact Ball Bearing in a Spindle System
,”
Int. J. Precis. Eng. Manuf.
,
16
(
1
), pp.
135
142
.
9.
Tong
,
V. C.
, and
Hong
,
S. W.
,
2016
, “
The Effect of Angular Misalignment on the Running Torques of Tapered Roller Bearings
,”
Tribol. Int.
,
95
, pp.
76
85
.
10.
Bălan
,
M. R. D.
,
Stamate
,
V. C.
,
Houpert
,
L.
, and
Olaru
,
D. N.
,
2014
, “
The Influence of the Lubricant Viscosity on the Rolling Friction Torque
,”
Tribol. Int.
,
72
, pp.
1
12
.
11.
Suda
,
M.
, and
Ishikawa
,
Y.
,
1975
, “
On the Frictional Resistance of Preloading Linear Ball Bearing
,”
J. Jpn Soc. Precis. Eng.
,
41
(
489
), pp.
1007
1012
.
12.
Sato
,
R.
,
Tsutsumi
,
M.
, and
Imaki
,
D.
,
2007
, “
Experimental Evaluation on the Friction Characteristics of Linear Ball Guides
,”
Trans. Jpn Soc. Mech. Eng. C
,
19
(
10
), pp.
2811
2819
.
13.
Lee
,
W.
,
Lee
,
C. Y.
,
Jeong
,
Y. H.
, and
Min
,
B. K.
,
2015
, “
Friction Compensation Controller for Load Varying Machine Tool Feed Drive
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
47
54
.
14.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Rolling Bearing Analysis
, 5th ed.,
Taylor & Francis Group
,
New York
.
15.
Ohta
,
H.
,
Sato
,
Y.
, and
Ueki
,
Y.
,
2015
, “
Effects of Misaligned Rails on the Friction Force-Displacement Curves of a Linear Ball Bearing System in Low-Speed Operation
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
12
), pp.
1469
1478
.
16.
Kakuta
,
K.
,
1961
, “
Friction Moment of Radial Ball Bearing Under Thrust Load
,”
Trans. Jpn Soc. Mech. Eng.
,
27
(
178
), pp.
945
956
.
17.
Jang
,
S. H.
,
Khim
,
G. H.
, and
Park
,
C. H.
,
2017
, “
Estimation of Friction Heat in a Linear Motion Bearing Using Box–Behnken Design
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
2021
2029
.
18.
Cheng
,
D.-J.
,
Yang
,
W.-S.
,
Park
,
J.-H.
,
Park
,
T.-J.
,
Kim
,
S.-J.
,
Kim
,
G.-H.
, and
Park
,
C.-H.
,
2014
, “
Friction Experiment of Linear Motion Roller Guide THK SRG25
,”
Int. J. Precis. Eng. Manuf.
,
15
(
3
), pp.
545
551
.
19.
dos Santos
,
M. O.
,
Batalha
,
G. F.
,
Bordinassi
,
E. C.
, and
Miori
,
G. F.
,
2018
, “
Numerical and Experimental Modeling of Thermal Errors in a Five-Axis CNC Machining Center
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2619
2642
.
20.
Kaneko
,
S.
,
Sato
,
R.
, and
Tsutsumi
,
M.
,
2008
, “
Mathematical Model of Linear Motor Stage With Non-Linear Friction Characteristics
,”
J. Adv. Mech. Des. Syst. Manuf.
,
2
(
4
), pp.
675
684
.
21.
Oh
,
K. J.
,
Khim
,
G. H.
,
Park
,
C. H.
, and
Chung
,
S. C.
,
2019
, “
Explicit Modeling and Investigation of Friction Forces in Linear Motion Ball Guides
,”
Tribol. Int.
,
129
, pp.
16
28
.
22.
THK Co., Ltd.
,
2016
,
LM Guide® THK general catalog No. 508–2E, Japan
.
23.
NSK Ltd.
,
2015
,
NSK Linear GuideTM, No. E3328h, Japan
.
24.
Tong
,
V. C.
,
Khim
,
G. H.
,
Hong
,
S. W.
, and
Park
,
C. H.
,
2019
, “
Construction and Validation of a Theoretical Model of the Stiffness Matrix of a Linear Ball Guide With Consideration of Carriage Flexibility
,”
Mech. Mach. Theory
,
140
, pp.
123
143
.
25.
Houpert
,
L.
,
1984
, “
The Film Thickness in Piezoviscous-Rigid Regime; Film Thickness Lubrication Regimes Transition Criteria
,”
ASME J. Tribol.
,
106
(
3
), pp.
375
381
.
26.
Houpert
,
L.
,
1987
, “
Piezoviscous-rigid Rolling and Sliding Traction Forces, Application: The Rolling Element–Cage Pocket Contact
,”
ASME J. Tribol.
,
109
(
2
), pp.
363
370
.
27.
Biboulet
,
N.
, and
Houpert
,
L.
,
2010
, “
Hydrodynamic Force and Moment in Pure Rolling Lubricated Contacts: Part II, Point Contacts
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
224
(
8
), pp.
777
787
.
28.
Gonçalves
,
D.
,
Cousseau
,
T.
,
Gama
,
A.
,
Campos
,
A. V.
, and
Seabra
,
J. H. O.
,
2017
, “
Friction Torque in Thrust Roller Bearings Lubricated With Greases, Their Base Oils and Bleed-Oils
,”
Tribol. Int.
,
107
, pp.
306
319
.
29.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1977
, “
Isothermal Elasto-Hydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results
,”
ASME J. Lubr. Technol.
,
99
(
2
), pp.
264
275
.
30.
Khonsari
,
M. M.
, and
Booser
,
E. R.
,
2008
,
Applied Tribology: Bearing Design and Lubrication
,
John Wiley & Sons
,
Hoboken, NJ
.
31.
Cen
,
H.
,
Lugt
,
P. M.
, and
Morales-Espejel
,
G.
,
2014
, “
On the Film Thickness of Grease-Lubricated Contacts at Low Speeds
,”
Tribol. Trans.
,
57
(
4
), pp.
668
678
.
32.
Cyriac
,
F.
,
Lugt
,
P. M.
,
Bosman
,
R.
,
Padberg
,
C. J.
, and
Venner
,
C. H.
,
2016
, “
Effect of Thickener Particle Geometry and Concentration on the Grease EHL Film Thickness at Medium Speeds
,”
Tribol. Lett.
,
61
(
18
), pp.
1
13
.
33.
Jeng
,
Y. R.
, and
Gao
,
C. C.
,
2001
, “
Investigation of the Ball-Bearing Temperature Rise Under an Oil-Air Lubrication System
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
215
(
2
), pp.
139
148
.
34.
Takabi
,
J.
, and
Khonsari
,
M. M.
,
2013
, “
Experimental Testing and Thermal Analysis of Ball Bearings
,”
Tribol. Int.
,
60
, pp.
93
1033
.
You do not currently have access to this content.