This paper presents a theoretical study and experimental method to recognize the dynamic performance (stiffness and damping coefficients) of an externally pressurized deep/shallow pockets hybrid conical bearing compensated by flat capillary restrictors. The equations governing the flow of fluid film in the conical bearing together with the pressure boundary condition and the restrictor flow equation are solved by using the finite element method. A delicate test rig is constructed and bearings having a big end diameter of 97 mm, a length of 90 mm, and a radial clearance of 0.02–0.025 mm are analyzed. It is assumed that the fluid film force of the hydrostatic/hydrodynamic conical bearing is characterized by a set of linear stiffness and damping coefficients. The experiment used the impulse excitation method to recognize these coefficients and established their characteristics under different operating conditions. Numerical results are compared with the experimental results. The stability parameters of hybrid conical, hydrodynamic, and hydrostatic bearings are compared. The results show that the hybrid conical bearing has the advantages of high load carrying capability and high stability under small eccentricity.

1.
Lund
,
J. W.
, and
Thomsen
,
K. K.
, 1978, “
A Calculation Method and Data for the Dynamic Coefficients of Oil-Lubrication Journal Bearing
,”
Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization
,
ASME
,
New York
.
2.
Qiu
,
Z. L.
, and
Tieu
,
A. K.
, 1996, “
The Effect of Perturbation Amplitudes on Eight Force Coefficients of Journal Bearing
,”
STLE Tribol. Trans.
1040-2004,
39
, pp.
469
475
.
3.
Parkins
,
D. W.
, 1979, “
Theoretical and Experimental Determination of the Dynamic Characteristics of a Hydrodynamic Journal Bearing
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
129
139
.
4.
Pan
,
C. H. T.
, and
Kim
,
D.
, 2007, “
Stability Characteristics of a Rigid Rotor Supported by a Gas-Lubricated Spiral-Groove Conical Bearing
,”
ASME J. Tribol.
0742-4787,
129
(
2
), pp.
375
383
.
5.
San Andrés
,
L.
, 1990, “
Approximate Analysis of Turbulent Hybrid Bearings. Static and Dynamic Performance for Centered Operation
,”
ASME J. Tribol.
0742-4787,
112
(
4
), pp.
692
698
.
6.
Liu
,
L. X.
, and
Spakovszky
,
Z. S.
, 2007, “
Effects of Bearing Stiffness Anisotropy on Hydrostatic Micro Gas Journal Bearing Dynamic Behavior
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
1
), pp.
177
184
.
7.
Yang
,
L. H.
,
Qin
,
S. M.
, and
Yu
,
L.
, 2008, “
Numerical Analysis on Dynamic Coefficients of Self-Acting Gas-Lubricated Tilting-Pad Journal Bearings
,”
ASME J. Tribol.
0742-4787,
130
(
1
), pp.
011006
011016
.
8.
Guo
,
H.
,
Lai
,
X. M.
, and
Cen
,
S. Q.
, 2009, “
Performance of Flat Capillary Compensated Deep/Shallow Pockets Hydrostatic/Hydrodynamic Journal-Thrust Floating Ring Bearing
,”
STLE Tribol. Trans.
1040-2004,
52
, pp.
204
212
.
9.
Flack
,
R. D.
,
Kostrzewsky
,
G. J.
, and
Taylor
,
D. V.
, 1993, “
A Hydrodynamic Journal Bearing Test Rig With Dynamic Measurement Capabilities
,”
STLE Tribol. Trans.
1040-2004,
36
, pp.
497
512
.
10.
Rodkiewicz
,
C. M.
, and
Kalita
,
W.
, 1995, “
Experimental Investigation Regarding the Effects of Grooves on Conical Bearing Performance
,”
STLE Tribol. Trans.
1040-2004,
38
, pp.
178
182
.
11.
Franchek
,
N. M.
,
Childs
,
D. W.
, and
San Andres
,
L.
, 1995, “
Theoretical and Experimental Comparisons for Rotordynamic Coefficients of a High-Speed, High-Pressure, Orifice-Compensated Hybrid Bearing
,”
ASME J. Tribol.
0742-4787,
117
(
2
), pp.
285
290
.
12.
Laurant
,
F.
, and
Childs
,
D. W.
, 2002, “
Measurements of Rotordynamic Coefficients of Hybrid Bearings With (a) a Plugged Orifice, and (b) a Worn Land Surface
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
2
), pp.
363
368
.
13.
Tieu
,
A. K.
, and
Qiu
,
Z. L.
, 1994, “
Identification of Sixteen Dynamic Coefficients of Two Journal Bearings From Experimental Unbalance Responses
,”
Wear
0043-1648,
177
, pp.
63
69
.
14.
Qiu
,
Z. L.
, and
Tieu
,
A. K.
, 1997, “
Identification of Sixteen Dynamic Coefficients of Two Journal Bearings From Impulse Responses
,”
Wear
0043-1648,
212
, pp.
206
212
.
15.
Zhang
,
Y. Y.
,
Xie
,
Y. B.
, and
Qiu
,
D. M.
, 1992, “
Identification of Linearized Oil-Film Coefficients in a Flexible Rotor-Bearing System, Part I: Model and Simulation
,”
J. Sound Vib.
0022-460X,
152
, pp.
531
547
.
16.
Zhang
,
Y. Y.
,
Xie
,
Y. B.
, and
Qiu
,
D. M.
, 1992, “
Identification of Linearized Oil-Film Coefficients in a Flexible Rotor-Bearing System, Part II: Experiment
,”
J. Sound Vib.
0022-460X,
152
, pp.
549
559
.
17.
Jiang
,
G. D.
,
Hu
,
H.
,
Xu
,
W.
,
Jin
,
Z. W.
, and
Xie
,
Y. B.
, 1997, “
Identification of Oil Film Coefficients of Large Journal Bearings on a Full Scale Journal Bearing Test Rig
,”
Tribol. Int.
0301-679X,
30
, pp.
789
793
.
18.
Kostrzewsky
,
G. J.
,
Taylor
,
D. V.
, and
Flack
,
R. D.
, 1994, “
Experimental Determination of the Dynamic Characteristics of a Two-Axial Groove Journal Bearing
,”
STLE Tribol. Trans.
1040-2004,
37
, pp.
534
542
.
19.
Zhou
,
H.
,
Zhao
,
S. X.
,
Xu
,
H.
, and
Zhu
,
J.
, 2004, “
An Experimental Study on Oil-Film Dynamic Coefficients
,”
Tribol. Int.
0301-679X,
37
, pp.
245
253
.
20.
San Andréas
,
L.
, and
De Santiago
,
O.
, 2005, “
Identification of Journal Bearing Force Coefficients Under High Dynamic Loading Centered Static Operation
,”
STLE Tribol. Trans.
1040-2004,
48
, pp.
9
17
.
21.
De Santiago
,
O.
, and
San Andrés
,
L.
, 2007, “
Experimental Identification of Bearing Dynamic Force Coefficients in a Flexible Rotor—Further Developments
,”
STLE Tribol. Trans.
1040-2004,
50
, pp.
114
126
.
22.
Ene
,
N. M.
,
Dimofte
,
F.
, and
Keith
,
T. G.
, Jr.
, 2008, “
A Stability Analysis for a Hydrodynamic Three-Wave Journal Bearing
,”
Tribol. Int.
0301-679X,
41
, pp.
434
442
.
23.
Zhang
,
Z. M.
, 1987,
Dynamic Lubrication Theory of Sliding Bearing
,
Higher Education
,
Beijing, China
, p.
280
.
You do not currently have access to this content.