Surface pitting due to contact fatigue is a major failure mode of many mechanical components, such as various gears and rolling-element bearings. Pitting life prediction, therefore, is vital to design and performance/reliability improvements. Conventional prediction methods, commonly found in industrial standards, are based on the Hertzian contact theory under the assumptions that surfaces are ideally smooth with no lubrication. Today, the trend of high power density, high reliability compact design requires the life prediction to consider severe operation conditions in mixed lubrication, and the effect of surface roughness and topography. Also, it has been well known that ductile material failures in concentrated contacts are better correlated with the subsurface von Mises stress, rather than the normal Hertzian pressure. The present study aims to develop a pitting life prediction approach for line-contact components based on a 3D line-contact mixed elastohydrodynamic lubrication (EHL) model recently developed by Ren et al. (2009, “A Three-Dimensional Deterministic Model for Rough Surface Line-Contact EHL Problems,” ASME J. Tribol., 131, p. 011501), which is capable of simulating the entire transition from full-film and mixed EHL down to dry contact of real machined rough surfaces under severe operating conditions. The pitting life evaluation employs the fatigue life model developed by Zaretsky (1987, “Fatigue Criterion to System Design, Life and Reliability,” J. Propul. Power, 3(1), pp. 76–83) and extended by Epstein et al. (2003, “Effect of Surface Topography on Contact Fatigue in Mixed Lubrication,” Tribol. Trans., 46, pp. 506–513) using the von Mises stress field calculated based on the rough surface mixed-EHL results. Sample cases are analyzed for 15 sets of transmission gears, and the life prediction results are compared with available experimental data. With optimized material constants in the life model, predicted pitting life results well agree with the test data.

1.
American Gear Manufacturers Association
, 1995, “
ANSI/AGMA 2001-C95: Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth
.”
2.
ISO
, 1997, “
Calculation of Load Capacity of Spur and Helical Gears, International Standards Organization
,” ISO-6336.
3.
1987, “
DIN 3990-5-1987: Calculation of Load Capacity of Cylindrical Gears; Endurance Limits and Material Qualities
.”
4.
International Standards Organization (ISO)
, 2007, “
Rolling Bearings-Dynamic Load Ratings and Rating Life
,” Second Edition, ISO 281.
5.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
6.
Lundberg
,
G.
, and
Palmgren
,
A.
, 1947, “
Dynamic Capacity of Rolling Bearings
,”
Acta Polytechnica, Mech. Eng. Series I, Royal Swedish Academy of Engineering Sciences
,
3
(
1
), pp.
1
50
.
7.
Weibull
,
W.
, 1939, “
A Statistical Theory of the Strength of Materials
,” Royal Swedish Academy of Engineering Sciences, Proceedings No. 151.
8.
Weibull
,
W.
, 1939, “
The Phenomenon of Rupture in Solids
,” Royal Swedish Academy of Engineering Sciences, Proceedings No. 153.
9.
Ioannides
,
E.
, and
Harris
,
T. A.
, 1985, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
0742-4787,
107
, pp.
367
378
.
10.
Zaretsky
,
E. V.
, 1987, “
Fatigue Criterion to System Design, Life and Reliability
,”
J. Propul. Power
0748-4658,
3
(
1
), pp.
76
83
.
11.
Tallian
,
T. E.
, 1996, “
A Data-Fitted Rolling Bearing Life Prediction Model, Parts 1–3
,”
Tribol. Trans.
1040-2004,
39
(
2
), pp.
249
275
.
12.
Tripp
,
J. H.
, and
Ioannides
,
E.
, 1990, “
Effects of Surface Roughness on Rolling Bearing Life
,”
Proceedings of the Japan International Tribology Conference
, Nagoya, Japan, pp.
797
802
.
13.
Ai
,
X. L.
, 1998, “
Effect of Three-Dimensional Random Surface Roughness on Contact Fatigue
,”
ASME J. Tribol.
0742-4787,
120
, pp.
159
164
.
14.
Xu
,
G.
, and
Sadeghi
,
F.
, 1996, “
Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness
,”
ASME J. Tribol.
0742-4787,
118
, pp.
473
483
.
15.
Zhu
,
D.
, and
Ai
,
X.
, 1997, “
Point Contact EHL Based on Optically Measured Three-Dimensional Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
119
, pp.
375
384
.
16.
Jiang
,
X.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X.
, and
Lee
,
S. C.
, 1999, “
A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact
,”
ASME J. Tribol.
0742-4787,
121
, pp.
481
491
.
17.
Zhu
,
D.
, and
Hu
,
Y. Z.
, 1999, “
The Study of Transition From Full Film Elastohydrodynamic to Mixed and Boundary Lubrication
,”
Proceedings of 1999 STLE/ASME H. S. Cheng Tribology Surveillance
,
STLE/ASME
,
Park Ridge, IL
, pp.
150
156
.
18.
Hu
,
Y. Z.
, and
Zhu
,
D.
, 2000, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
0742-4787,
122
, pp.
1
9
.
19.
Zhu
,
D.
, and
Hu
,
Y. Z.
, 2001, “
A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3-D Surface Roughness
,”
Tribol. Trans.
1040-2004,
44
, pp.
383
390
.
20.
Zhu
,
D.
, 2003, “
Effect of Surface Roughness on Mixed EHD Lubrication Characteristics
,”
Tribol. Trans.
1040-2004,
46
, pp.
44
48
.
21.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
, 2001, “
Analysis of EHL Circular Contact Start Up: Part 1-Mixed Contact Model With Pressure and Film Thickness Results
,”
ASME J. Tribol.
0742-4787,
123
, pp.
67
74
.
22.
Tao
,
J.
,
Hughes
,
T. G.
,
Evans
,
H. P.
,
Snidle
,
R. W.
,
Hopkinson
,
N. A.
,
Talks
,
M.
, and
Starbuck
,
J. M.
, 2003, “
Elastohydrodynamic Lubrication Analysis of Gear Tooth Surfaces From Micropitting Tests
,”
ASME J. Tribol.
0742-4787,
125
, pp.
267
274
.
23.
Holmes
,
M. J. A.
,
Qiao
,
H.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
, 2004, “
Surface Contact and Damage in Micro-EHL
,”
Life Cycle Tribology, Proceedings of the 31st Leeds-Lyon Symposium on Tribology, Leeds 2004
,
Tribology and Interface Engineering Series
,
Elsevier
,
Amsterdam
, pp.
605
616
.
24.
Holmes
,
M. J. A.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
, 2005, “
Analysis of Mixed Lubrication Effects in Simulated Gear Tooth Contacts
,”
ASME J. Tribol.
0742-4787,
127
, pp.
61
69
.
25.
Liu
,
Y.
,
Wang
,
Q.
,
Zhu
,
D.
,
Wang
,
W.
, and
Hu
,
Y.
, 2009, “
Effects of Differential Scheme and Viscosity Model on Rough-Surface Point-Contact Isothermal EHL
,”
ASME J. Tribol.
0742-4787,
131
, p.
044501
.
26.
Zhu
,
D.
, 2007, “
On Some Aspects in Numerical Simulation of Thin Film and Mixed EHL
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
221
, pp.
561
579
.
27.
Liu
,
Y.
,
Wang
,
Q.
,
Hu
,
Y.
,
Wang
,
W.
, and
Zhu
,
D.
, 2006, “
Effects of Differential Schemes and Mesh Density on EHL Film Thickness in Point Contacts
,”
ASME J. Tribol.
0742-4787,
128
, pp.
641
653
.
28.
Hu
,
Y. Z.
,
Barber
,
G. C.
, and
Zhu
,
D.
, 1999, “
Numerical Analysis for the Elastic Contact of Real Rough Surfaces
,”
Tribol. Trans.
1040-2004,
42
, pp.
443
452
.
29.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 1999, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques
,”
Wear
0043-1648,
231
, pp.
206
219
.
30.
Polonsky
,
I. A.
, and
Keer
,
L. M.
, 2000, “
A Fast and Accurate Method for Numerical Analysis of Layered Elastic Contacts
,”
ASME J. Tribol.
0742-4787,
122
, pp.
30
35
.
31.
Ai
,
X.
, and
Sawamiphakdi
,
K.
, 1999, “
Solving Elastic Contact Between Rough Surfaces as an Unconstrained Strain Energy Minimization by Using CGM and FFT Techniques
,”
ASME J. Tribol.
0742-4787,
121
, pp.
639
647
.
32.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
, 2000, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
0043-1648,
243
, pp.
101
110
.
33.
Liu
,
S.
, and
Wang
,
Q.
, 2001, “
A Three-Dimensional Thermomechanical Model of Contact Between Non-Conforming Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
123
, pp.
17
26
.
34.
Martini
,
A.
,
Escoffier
,
B.
,
Liu
,
S.
,
Wang
,
Q.
,
Keer
,
L. M.
, and
Zhu
,
D.
, 2006, “
Prediction of Subsurface Stress in Elastic Perfectly Plastic Rough Components
,”
Tribol. Lett.
1023-8883,
23
, pp.
243
251
.
35.
Murakami
,
Y.
, and
Endo
,
M.
, 1994, “
Effects of Defects, Inclusions and Inhomogeneties on Fatigue Strength
,”
Int. J. Fatigue
0142-1123,
16
, pp.
163
182
.
36.
Kudish
,
I.
, 2000, “
A New Statistical Model of Contact Fatigue
,”
Tribol. Trans.
1040-2004,
43
(
4
), pp.
711
721
.
37.
Kudish
,
I.
, 2007, “
Fatigue Modeling for Elastic Materials With Statistically Distributed Defects
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
1125
1133
.
38.
Zhou
,
K.
,
Chen
,
W. W.
,
Keer
,
L. M.
, and
Wang
,
Q.
, 2009, “
A Fast Method for Solving Three-Dimensional Arbitrarily-Shaped Inclusions in a Half Space
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
885
892
.
39.
Epstein
,
D.
,
Keer
,
L. M.
,
Wang
,
Q.
,
Cheng
,
H. S.
, and
Zhu
,
D.
, 2003, “
Effect of Surface Topography on Contact Fatigue in Mixed Lubrication
,”
Tribol. Trans.
1040-2004,
46
, pp.
506
513
.
40.
Qiao
,
H.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
, 2008, “
Comparison of Fatigue Model Results for Rough Surface Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
222
, pp.
381
393
.
41.
Ren
,
N.
,
Zhu
,
D.
,
Chen
,
W.
,
Liu
,
Y.
, and
Wang
,
Q.
, 2009, “
A Three-Dimensional Deterministic Model for Rough Surface Line-Contact EHL Problems
,”
ASME J. Tribol.
0742-4787,
131
, p.
011501
.
42.
Chen
,
W. W.
,
Liu
,
S. B.
, and
Wang
,
Q.
, 2008, “
FFT-Based Numerical Methods for Elasto-Plastic Contacts with Nominally Flat Surface
,”
ASME J. Appl. Mech.
0021-8936,
75
(
1
), p.
011022
.
43.
Zhu
,
D.
, and
Cheng
,
H. S.
, 1991, “
A Comprehensive Analysis for Contact Geometry, Kinematics, Lubrication Performance, Bulk and Flash Temperatures in Helical Gears
,”
Vehicle Tribology, Proceedings of the 17th Leeds-Lyon Symposium on Tribology
,
Elsevier
,
New York
, pp.
383
389
.
You do not currently have access to this content.