A lubrication model for the head-media interface is presented which includes the effect of porosity in the media coating. Experimental data is shown which illustrates the reduction in head-media spacing as porosity is increased. A modified Reynolds equation is derived to account for the effects of coating porosity. Other authors have considered a very thin porous layer to simulate a liquid lubricant or surface microstructure on a nonporous substrate. This study considers a porous layer that can be much larger than the bearing clearance. Darcy’s law is used in the porous layer. Velocity-slip effects, resulting both from rarefaction and the porous boundary, are considered. The modified Reynolds equation is applied to a simple capillary model of a porous layer as an illustrative example. The modified Reynolds equation was incorporated into a finite-element model for the head-media interface. Computations show reduced head-media clearance as porosity and permeability are increased in agreement with experimental data.

1.
Tichy
,
J. A.
,
1995
, “
A Porous Media Model for Thin Film Lubrication
,”
ASME J. Tribol.
,
117
, pp.
16
21
.
2.
Mitsuya
,
Y.
,
Deng
,
Z.
, and
Ohka
,
M.
,
1997
, “
Derivation of Rarefaction-Modified Reynolds Equation Considering Porosity of Thin Lubricant Film
,”
ASME J. Tribol.
,
119
, pp.
653
659
.
3.
Beavers
,
G. S.
, and
Joseph
,
D. D.
,
1967
, “
Boundary Conditions at a Naturally Permeable Wall
,”
J. Fluid Mech.
,
30
, pp.
197
207
.
4.
Burgdorfer
,
A.
,
1959
, “
The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic Gas lubricated Bearings
,”
ASME J. Basic Eng.
,
81
, pp.
94
100
.
5.
Li
,
W.-L.
,
1999
, “
Derivation of Modified Reynolds Equation—A Porous media Model
,”
ASME J. Tribol.
,
121
, pp.
823
829
.
6.
Loeb, 1961, The Kinetic Theory of Gases, Dover, New York.
7.
Fukui
,
S.
, and
Kaneko
,
R.
,
1990
,
ASME J. Tribol.
,
112
, p.
78
78
.
8.
Kang
,
S.-C.
,
Crone
,
R. M.
, and
Jhon
,
M. S.
,
1999
,
J. Appl. Phys.
,
85
, pp.
5594
5596
.
9.
Cussler, E. L., 1984, Diffusion, Cambridge University Press, pp. 19–42, 108.
10.
Jackson, J. D., 1962, Classical Electrodynamics, Wiley, New York, p. 313.
11.
Scheidegger, A. E., 1974, The Physics of Flow Through Porous Media, 3rd ed., University of Toronto Press.
12.
Kennard, E. H., 1938, Kinetic Theory of Gases, McGraw-Hill, New York.
13.
Perry
,
D. M.
,
Knudsen
,
J. K.
, and
Skelcher
,
W. L.
,
1986
, “
Design of Flying Heads for Tensioned Flexible Recording Media
,”
IEEE Trans. Magn.
,
MAG-22
, pp.
1005
1007
.
14.
Crone
,
R. M.
,
Jhon
,
M. S.
,
Bhushan
,
B.
, and
Karis
,
T. E.
,
1991
, “
Modeling the Flying Characteristics of a Rough Magnetic Head Over a Rough Rigid-Disk Surface
,”
ASME J. Tribol.
,
113
, pp.
739
749
.
15.
Azarian
,
M. H.
,
Bauer
,
C. L.
,
O’Connor
,
T. M.
,
Crone
,
R. M.
, and
Jhon
,
M. S.
,
1993
, “
Critical Operating Conditions for a Novel Flying Tester
,”
Tribol. Trans.
,
36
, pp.
525
534
.
16.
Kistler
,
S. F.
, 1985, “Finite Element Analysis of Head-Tape Interfaces in Rotating Head Recording Part I: Computational Methods,” 3M Technical Report No. 3248500620-001.
17.
Payre
,
G.
,
deBroissia
,
M.
, and
Bazinet
,
J.
,
1982
, “
An Upwind Finite Element Method via Numerical Integration
,”
Int. J. Numer. Methods Eng.
,
18
, pp.
381
396
.
18.
Hood
,
P.
,
1976
, “
Frontal Solution Program for Unsymmetric Matrices
,”
Int. J. Numer. Methods Eng.
,
10
, pp.
379
399
.
19.
Hood
,
P.
,
1977
, “
Correction
,”
Int. J. Numer. Methods Eng.
,
11
, p.
1055
1055
.
You do not currently have access to this content.