Assuming that harder asperities sliding on a flat surface were semicylindrical with the hemispherical ends, whose surface consisted of a series of spherical micro-asperities, effects of the number of contact points n, total area Sp of the cross-sections of grooves ploughed by harder asperities and depth of plastic zone on the coefficient of friction and wear for ceramics were theoretically analyzed. To verify theory, wear tests with various ceramic pins and a Si3N4 disk were carried out at a sliding speed of 1.63 m/s and under load of 0.98 N with no lubrication. The sizes of wear scratches on the worn surfaces were measured by means of a Talysurf and SEM photographs. The wear rates of the pins and Si3N4 disks increased with an increase in the mean cross-sectional area Sp/n of the scratches. This trend agreed with the theoretical results, which also showed that the Sp values were proportional to the wear rates. Theory also indicated the existence of a new criterion applicable to estimation of the wear rate.

This content is only available via PDF.
You do not currently have access to this content.