Experimental data were collected for one smooth round tube bundle and three twisted elliptical tube bundles using a kerosene mixture as a condensing vapor and air as a noncondensable gas. Experimental results showed that heat transfer for the twisted tubes was enhanced by a factor of 1.5–3 as compared to the plain tubes, depending on the specific tube geometry and process conditions. Heat transfer enhancement was found to increase with decreasing twist pitch, increasing tube ellipticity, and increasing mass flow rate. The presence of noncondensable gas was observed to significantly decrease condensation heat transfer performance due to the increase in mass diffusion resistance and lowering of the vapor condensation temperature at the vapor–liquid interface. Using the heat and mass transfer analogy method, a correlation for the condensation heat transfer coefficient of the mixture has been developed from the experimental data. Comparisons show that the predicative accuracy of the new correlation is within ±25% for the majority of experimental data.

References

1.
Liang
,
L.
,
2001
, “
Characteristic of Spiral-Flat Tube Heat Exchanger and Its Commercial Application
,”
J. Pet. Refin. Eng.
,
31
(
8
), pp.
28
33
.
2.
Qin
,
S.
,
Xia
,
Q.
,
Liang
,
L.
, and
Li
,
D.
,
1995
, “
Investigation of Heat Transfer and Flow Resistance on Twisted Tube Heat Exchanger
,”
Huagong Xuebao/J. Chem. Ind. Eng.
,
46
(
5
), pp.
601
608
.
3.
Gao
,
X. N.
,
2008
, “
Heat Transfer and Flow Resistance Properties in Twisted Oblate Tube With Large Twist Ratio
,”
Huanan Ligong Daxue Xuebao/J. South China Univ. Technol.
,
36
(
11
), pp.
17
21
.
4.
Bishara
,
F.
,
Jog
,
M. A.
,
Manglik
,
R. M.
,
Bishara
,
F.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2009
, “
Heat Transfer and Pressure Drop of Periodically Fully Developed Swirling Laminar Flows in Twisted Tubes With Elliptical Cross Sections
,”
ASME
Paper No. IMECE2009-11285.
5.
Bishara
,
F.
,
Jog
,
M. A.
, and
Manglik
,
R. M.
,
2013
, “
Heat Transfer Enhancement Due to Swirl Effects in Oval Tubes Twisted About Their Longitudinal Axis
,”
J. Enhanced Heat Transfer
,
20
(
4
), pp.
289
304
.
6.
Meng
,
J. A.
,
2002
, “
Simulation and Analysis on Laminar Flow and Heat Transfer in Twisted Ellipse-Tube
,”
J. Eng. Thermophys.
,
23
, pp.
117
120
.
7.
Yang
,
L.
, and
Zhi-Xin
,
L. I.
,
2003
, “
Numerical Analysis of Laminar Flow and Heat Transfer in Twisted Elliptic Tubes
,”
J. Eng. Mech.
,
20
(
5
), pp.
143
148
.
8.
Dzyubenko
,
B. V.
,
2005
, “
Influence of Flow Twisting on Convective Heat Transfer in Banks of Twisted Tubes
,”
J. Heat Transfer Res.
,
36
(
6
), pp.
449
459
.
9.
Dzyubenko
,
B. V.
,
2006
, “
Estimation of the Thermohydraulic Efficiency of Heat Exchanging Apparatuses With Twisted Tubes
,”
J. Heat Transfer Res.
,
37
(
4
), pp.
349
363
.
10.
Tan
,
X. H.
,
Zhu
,
D. S.
,
Zhou
,
G. Y.
, and
Zeng
,
L. D.
,
2012
, “
Experimental and Numerical Study of Convective Heat Transfer and Fluid Flow in Twisted Oval Tubes
,”
J. Int. J. Heat Mass Transfer
,
55
(
17
), pp.
4701
4710
.
11.
Tan
,
X. H.
,
Zhu
,
D. S.
,
Zhou
,
G. Y.
, and
Zeng
,
L. D.
,
2013
, “
Heat Transfer and Pressure Drop Performance of Twisted Oval Tube Heat Exchanger
,”
J. Appl. Therm. Eng.
,
50
(
1
), pp.
374
383
.
12.
Tan
,
X. H.
,
Zhu
,
D. S.
,
Zhou
,
G. Y.
, and
Yang
,
L.
,
2013
, “
3D Numerical Simulation on the Shell Side Heat Transfer and Pressure Drop Performances of Twisted Oval Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
65
, pp.
244
253
.
13.
Ljubicic
,
B.
,
1999
, “
Testing of Twisted-Tube Exchangers in Transition Flow Regime
,”
Compact Heat Exchangers and Enhancement Technology for the Process Industries
, Begell House, New York, pp. 135–139.
14.
Yang
,
S.
,
Zhang
,
L.
, and
Xu
,
H.
,
2011
, “
Experimental Study on Convective Heat Transfer and Flow Resistance Characteristics of Water Flow in Twisted Elliptical Tubes
,”
J. Appl. Therm. Eng.
,
31
(
14
), pp.
2981
2991
.
15.
Zhang
,
L.
,
Yang
,
S.
, and
Xu
,
H.
,
2012
, “
Experimental Study on Condensation Heat Transfer Characteristics of Steam on Horizontal Twisted Elliptical Tubes
,”
J. Appl. Energy
,
97
(
3
), pp.
881
887
.
16.
Daubert
,
T. E.
, and
Danner
,
R. P.
,
1997
, “
API Technical Data Book-Petroleum Refining
,” American Petroleum Institute (API), Washington, DC.
17.
East-China Petroleum Institute
,
1975
, “
Petroleum Refining and Petrochemical Calculation Charts and Tables
,” East China Petroleum Refining System, Shandong, China.
18.
Colburn
,
A. P.
, and
Hougen
,
O. A.
,
1933
, “
Design of Cooler Condensers for Mixtures of Vapors With Noncondensing Gases
,”
J. Ind. Eng. Chem.
,
26
(
11
), pp.
1178
1182
.
19.
Estrin
,
J.
,
Hayes
,
T. W.
, and
Drew
,
T. B.
,
1965
, “
The Condensation of Mixed Vapors
,”
J. AICHE
,
11
(
5
), pp.
800
803
.
20.
Silver
,
L.
,
1947
, “
Gas Cooling With Aqueous Condensation
,”
J. Trans. Inst. Chem. Eng
,
25
, pp.
30
42
.
21.
Colburn
,
A. P.
, and
Edison
,
A. G.
,
2002
, “
Prevention of Fog in Cooler-Condensers
,”
J. Ind. Eng. Chem.
,
33
(
4
), pp.
457
458
.
22.
Sherwood
,
T. K.
, and
Pigford
,
R. L.
,
1952
,
Absorption and Extraction
,
McGraw-Hill
,
New York
.
23.
Bell
,
K.
, and
Ghaly
,
M.
,
1973
, “
An Approximate Generalized Design Method for Multicomponent/Partial Condenser
,”
AIChE Symp. Ser.
,
69
(
131
), pp.
72
79
.
24.
Gilliland
,
E. R.
,
1934
, “
Diffusion Coefficients in Gaseous Systems
,”
J. Ind. Eng. Chem.
,
26
(
6
), pp.
681
685
.
You do not currently have access to this content.