Abstract

Liquid lithium is widely regarded as an optimal cooling medium for space nuclear reactors due to its exceptional heat transfer properties and low density. However, the helium bubbles generated by liquid lithium under space irradiation pose significant hazards to the safe and stable operation of nuclear reactions. This study employs the COMSOL finite element software to construct the level-set two-phase flow models and bubble stream model separately to investigate the local accumulation of helium bubbles and the overall flow of low-concentration gas–liquid mixtures. The main focus is on examining the different distributions of multiple helium bubbles randomly generated in local liquid lithium and the influence of boundary conditions on their accumulation morphology, as well as the impact of low-concentration bubble stream on their overall heat transfer performance. Agglomerated bubbles with radii between 5 μm and 150 μm are classified into three categories based on local concentrations: circular (≤20.37%), irregular elongated (up to 30.44%), and banded (up to 36.31%).The interconnected banded bubbles can be up to 8 times larger than irregularly elongated ones, and they have a positive effect on the distribution of physical quantities and wall temperature perturbations in the pipeline. The increase in inlet velocity triggers bubble impacts and fragmentation, further reducing thermal resistance and enhancing heat transfer performance. When the bubble diameter is less than 15 μm and the bubble concentration is within 1%, the influence of the mixed flow on overall heat transfer is not significant. This study provides insights for manipulating bubble structure and guiding localized and comprehensive thermal analyses.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Wu
,
Y.
,
Bai
,
Y.
,
Song
,
Y.
,
Huang
,
Q.
,
Zhao
,
Z.
, and
Hu
,
L.
,
2016
, “
Development Strategy and Conceptual Design of China Lead-Based Research Reactor
,”
Ann. Nucl. Energy
,
87
, pp.
511
516
.
2.
Kirillov
,
I. R.
,
2000
, “
Lithium Cooled Blanket of RF DEMO Reactor
,”
Fusion Eng. Des.
,
49–50
, pp.
457
465
.
3.
Fradera
,
J.
, and
Cuesta-López
,
S.
,
2013
, “
Nucleation, Growth and Transport Modelling of Helium Bubbles Under Nuclear Irradiation in Lead-Lithium With the Self-Consistent Nucleation Theory and Surface Tension Corrections
,”
Fusion Eng. Des.
,
88
(
12
), pp.
3215
3223
.
4.
Iasir
,
A. R. M.
, and
Hammond
,
K. D.
,
2022
, “
Helium Impurities and Interactions in Lithium
,”
Comput. Mater. Sci.
,
204
, p.
111176
.
5.
Álvarez-Galera
,
E.
,
Martí
,
J.
,
Mazzanti
,
F.
, and
Batet
,
L.
,
2023
, “
Nucleation of Helium in Pure Liquid Lithium
,”
J. Chem. Phys.
,
159
(
2
), p.
024501
.
6.
McGhee
,
J. M.
,
1989
, “
Gas Production and Behavior in the Coolant of the SP-100 Space Nuclear Power System (No. LA-11629-T)
,” Los Alamos Natiottal Laborator, Los Alamos, NM.
7.
Mirsandi
,
H.
,
Baltussen
,
M. W.
,
Peters
,
E. A. J. F.
,
van Odyck
,
D. E. A.
,
van Oord
,
J.
,
van der Plas
,
D.
, and
Kuipers
,
J. A. M.
,
2020
, “
Numerical Simulations of Bubble Formation in Liquid Metal
,”
Int. J. Multiphase Flow
,
131
, p.
103363
.
8.
Liu
,
S.-M.
,
Li
,
S.-H.
, and
Han
,
W.-Z.
,
2020
, “
Revealing the Dynamics of Helium Bubbles Using In Situ Techniques
,”
JOM
,
72
(
6
), pp.
2352
2362
.
9.
Coulibaly
,
A.
,
Bi
,
J.
,
Lin
,
X.
, and
Christopher
,
D. M.
,
2014
, “
Effect of Bubble Coalescence on the Wall Heat Transfer During Subcooled Pool Boiling
,”
Int. J. Therm. Sci.
,
76
, pp.
101
109
.
10.
Gutierrez
,
G.
,
Peuget
,
S.
,
Hinks
,
J. A.
,
Greaves
,
G.
,
Donnelly
,
S. E.
,
Oliviero
,
E.
, and
Jégou
,
C.
,
2014
, “
Helium Bubble Formation in Nuclear Glass by In-Situ TEM Ion Implantation
,”
J. Nucl. Mater.
,
452
(
1–3
), pp.
565
568
.
11.
Han
,
Q.
,
Li
,
Y.
,
Ran
,
G.
,
Liu
,
X.
,
Wu
,
L.
,
Chen
,
Y.
,
Chen
,
P.
,
Ye
,
X.
,
Ding
,
Y.
, and
Wu
,
X.
,
2021
, “
In-Situ TEM Observation of the Evolution of Helium Bubbles & Dislocation Loops and Their Interaction in Pd During He+ Irradiation
,”
J. Mater. Sci. Technol.
,
87
, pp.
108
119
.
12.
Nieto
,
M.
,
Ruzic
,
D. N.
,
Allain
,
J. P.
,
Coventry
,
M. D.
, and
Vargas-Lopez
,
E.
,
2003
, “
Helium Retention and Diffusivity in Flowing Liquid Lithium
,”
J. Nucl. Mater.
,
313–316
(
SUPPL.
), pp.
646
650
.
13.
Martí
,
J.
,
Mazzanti
,
F.
,
Astrakharchik
,
G. E.
,
Batet
,
L.
,
Portos-Amill
,
L.
, and
Pedreño
,
B.
,
2022
, “
Nucleation of Helium in Liquid Lithium at 843 K and High Pressures
,”
Materials (Basel)
,
15
(
8
), pp.
1
18
.
14.
Tsuchiya
,
K.
,
Aida
,
M.
,
Fujii
,
Y.
, and
Okamoto
,
M.
,
1993
, “
Bubble Formation From a Single Nozzle in Moderator Liquids and Liquid Metal for Tritium Breeding
,”
J. Nucl. Mater.
,
207
(
C
), pp.
123
129
.
15.
Lee
,
B. F.
, and
Hammond
,
K. D.
,
2021
, “
Temperature-Dependent Model of Helium Bubble Expansion and Bursting in Tungsten
,”
J. Nucl. Mater.
,
554
, p.
153101
.
16.
Lopez de Bertodano
,
M.
,
Lahey
,
R. T.
, Jr.
, and
Jones
,
O. C.
,
1994
, “
Development of a k-ɛ Model for Bubbly Two-Phase Flow
,”
ASME J. Fluids Eng.
,
116
(
1
), pp.
128
134
.
17.
Olsson
,
E.
, and
Kreiss
,
G.
,
2005
, “
A Conservative Level Set Method for Two Phase Flow
,”
J. Comput. Phys.
,
210
(
1
), pp.
225
246
.
18.
Yue
,
P.
,
Feng
,
J. J.
,
Liu
,
C.
, and
Shen
,
J.
,
2004
, “
A Diffuse-Interface Method for Simulating Two-Phase Flows of Complex Fluids
,”
J. Fluid Mech.
,
515
, pp.
293
317
.
19.
Kuzmin
,
D.
, and
Turek
,
S.
,
2000
,
Efficient Numerical Techniques for Flow Simulation in Bubble Column Reactors, Institute of Applied Mathematics
,
University of Dortmund
,
Dortmund, Germany
.
20.
Schwarz
,
M. P.
, and
Turner
,
W. J.
,
1989
, “
Applicability of the Standard k-ɛ Turbulence Model to Gas-Stirred Baths
,”
Math. Comput. Modell.
,
12
(
9
), p.
1183
.
21.
Cheng
,
X.
, and
Tak
,
N.-I.
,
2006
, “
Investigation on Turbulent Heat Transfer to Lead-Bismuth Eutectic Flows in Circular Tubes for Nuclear Applications
,”
Nucl. Eng. Des.
,
236
(
4
), pp.
385
393
.
22.
Jeppson
,
D. W.
,
Ballif
,
J. L.
,
Yuan
,
W. W.
, and
Chou
,
B. E.
,
1978
, “
Lithium Literature Review: Lithium’s Properties and Interactions
,” Hanford Engineering Development Lab, Richland, WA.
23.
Davison
,
H. W.
,
1968
, “
Compilation of Thermophysical Properties of Liquid Lithium
,” National Aeronautics and Space Administration, Washington, D.C.
24.
Mochizuki
,
H.
,
2019
, “
Consideration on Nusselt Numbers of Liquid Metals Flowing in Tubes
,”
Nucl. Eng. Des.
,
351
, pp.
1
19
.
25.
Mochizuki
,
H.
,
2018
, “
Consideration on Nusselt Numbers of Liquid Metals Under Low Peclet Number Conditions
,”
Nucl. Eng. Des.
,
339
, pp.
171
180
.
You do not currently have access to this content.