Abstract

Moving bed part-fluidized boiler is a new type of furnace. The new combustion method in the furnace has attracted a lot of attention and shown attractive prospects. Two-dimensional computational fluid dynamic (CFD) simulations were performed for a 116 MW moving bed part-fluidized boiler to investigate the different combustion patterns of coal particles of different particle sizes inside the furnace chamber. A low-NOX combustion method based on the combination of laminar combustion and fluidized combustion is proposed. By comparing the effects of different air distributions on the fluidization state of coal particles, the air distribution values required for optimal fluidized combustion were obtained. The temperature field and pollutant distribution in the furnace chamber for the conventional combustion method and the new combustion method were also simulated. The results show that the combustion technology combining laminar combustion and fluidization of a moving bed part-fluidized boiler can significantly improve the combustion rate and reduce the NOX concentration at the furnace exit. When the secondary air speed is up to 15 m/s, the coal particles smaller than 5 mm are fully fluidized and burned in the whole furnace chamber. The coal particles larger than 5 mm are burned on the bed. The pollutant emission of the boiler can reach the best condition. The new type of boiler can reach a super clean emission in which the NOX emission value is below 47 mg/m3, and the SO2 emission value is reduced to 0.15 mg/m3.

References

1.
Jiang
,
Y.
,
Lee
,
B. H.
,
Oh
,
D. H.
, and
Jeon
,
C. H.
,
2021
, “
Optimization of Operating Conditions to Achieve Combustion Stability and Reduce NOx Emission at Half-Load for a 550-MW Tangentially Fired Pulverized Coal Boiler
,”
Fuel
,
306
, p.
121727
.
2.
Cui
,
Y.
,
Zhong
,
W.
,
Liu
,
X.
, and
Xiang
,
J.
,
2021
, “
Study on Scale-Up Characteristics in Supercritical CO2 Circulating Fluidized Bed Boiler by 3D CFD Simulation
,”
Powder Technol.
,
394
, pp.
103
119
.
3.
Song
,
G.
,
Xiao
,
Y.
,
Yang
,
Z.
,
Yang
,
X.
,
Lyu
,
Q.
,
Zhang
,
X.
, and
Pan
,
Q.
,
2021
, “
Operating Characteristics and Ultra-Low NOx Emission of 75 t/h Coal Slime Circulating Fluidized Bed Boiler With Post-Combustion Technology
,”
Fuel
,
292
, p.
120276
.
4.
Dong
,
H.
,
Zhang
,
Y.
,
Du
,
Q.
,
Gao
,
J.
,
Shang
,
Q.
,
Feng
,
D.
, and
Huang
,
Y.
,
2022
, “
Generation and Emission Characteristics of Fine Particles Generated by Power Plant Circulating Fluidized Bed Boiler
,”
Energies
,
15
(
19
), p.
6892
.
5.
Yang
,
C.
,
Zhang
,
Z.
,
Wu
,
H.
, and
Deng
,
K.
,
2022
, “
Dynamic Characteristics Analysis of a 660 Mw Ultra-Supercritical Circulating Fluidized Bed Boiler
,”
Energies
,
15
(
11
), p.
4049
.
6.
Ji
,
J.
, and
Cheng
,
L.
,
2020
, “
CFD Modeling of Sodium Transformation During High-Alkali Coal Combustion in a Large-Scale Circulating Fluidized Bed Boiler
,”
Fuel
,
279
, p.
118447
.
7.
Guo
,
X.
,
Bai
,
H.
,
Zhang
,
Z.
,
Yu
,
J.
,
Bi
,
D.
, and
Zhu
,
Z.
,
2020
, “
Aerodynamic Characteristics of a Stoker Furnace With Staged Combustion: Comparison of Cold Modeling Experiments and Numerical Simulations
,”
ACS Omega
,
5
(
27
), pp.
16332
16341
.
8.
Diba
,
M. F.
,
Karim
,
M. R.
, and
Naser
,
J.
,
2020
, “
Numerical Modelling of a Bubbling Fluidized Bed Combustion: A Simplified Approach
,”
Fuel
,
277
, p.
118170
.
9.
Adamczyk
,
W. P.
,
Kozołub
,
P.
,
Klimanek
,
A.
,
Białecki
,
R. A.
,
Andrzejczyk
,
M.
, and
Klajny
,
M.
,
2015
, “
Numerical Simulations of the Industrial Circulating Fluidized Bed Boiler Under Air-and Oxy-Fuel Combustion
,”
Appl. Therm. Eng.
,
87
, pp.
127
136
.
10.
Kong
,
D.
,
Wang
,
S.
,
Zhou
,
M.
,
Luo
,
K.
,
Hu
,
C.
,
Li
,
D.
, and
Fan
,
J.
,
2020
, “
Three-Dimensional Full-Loop Numerical Simulation of co-Combustion of Coal and Refuse Derived Fuel in a Pilot-Scale Circulating Fluidized bed Boiler
,”
Chem. Eng. Sci.
,
220
, p.
115612
.
11.
Wu
,
Y.
,
Liu
,
D.
,
Zheng
,
D.
,
Ma
,
J.
,
Duan
,
L.
, and
Chen
,
X.
,
2019
, “
Numerical Simulation of Circulating Fluidized Bed oxy-Fuel Combustion with Dense Discrete Phase Model
,”
Fuel Process. Technol.
,
195
, p.
106129
.
12.
Perrone
,
D.
,
Castiglione
,
T.
,
Klimanek
,
A.
,
Morrone
,
P.
, and
Amelio
,
M.
,
2018
, “
Numerical Simulations on Oxy-MILD Combustion of Pulverized Coal in an Industrial Boiler
,”
Fuel Process. Technol.
,
181
, pp.
361
374
.
13.
Beneš
,
M.
,
Eichler
,
P.
,
Klinkovský
,
J.
,
Kolář
,
M.
,
Solovský
,
J.
,
Strachota
,
P.
, and
Žák
,
A.
,
2021
, “
Numerical Simulation of Fluidization for Application in Oxyfuel Combustion
,”
. Dyn. Syst. - S.
,
14
(
3
).
14.
Liu
,
H.
,
Li
,
J.
, and
Wang
,
Q.
,
2018
, “
Three-Dimensional Numerical Simulation of the co-Combustion of Oil Shale Retorting Solid Waste With Cornstalk Particles in a Circulating Fluidized Bed Reactor
,”
Appl. Therm. Eng.
,
130
, pp.
296
308
.
15.
Li
,
S.
, and
Shen
,
Y.
,
2022
, “
Numerical Simulation of Multiphase Flow in a Full Coal-Direct Chemical Looping Combustion Process
,”
Chem. Eng. Sci.
,
248
, p.
117233
.
16.
Gómez
,
M. A.
,
Porteiro
,
J.
,
De la Cuesta
,
D.
,
Patiño
,
D.
, and
Míguez
,
J. L.
,
2016
, “
Numerical Simulation of the Combustion Process of a Pellet-Drop-Feed Boiler
,”
Fuel
,
184
, pp.
987
999
.
17.
Hamilton
,
M. A.
,
Whitty
,
K. J.
, and
Lighty
,
J. S.
,
2016
, “
Numerical Simulation Comparison of Two Reactor Configurations for Chemical Looping Combustion and Chemical Looping With Oxygen Uncoupling
,” ASME
J. Energy Resour. Technol.
,
138
(
4
), p. 042213.
18.
Krzywanski
,
J.
,
Sztekler
,
K.
,
Szubel
,
M.
,
Siwek
,
T.
,
Nowak
,
W.
, and
Mika
,
Ł
,
2020
, “
A Comprehensive, Three-Dimensional Analysis of a Large-Scale, Multi-Fuel, CFB Boiler Burning Coal and Syngas. Part 2. Numerical Simulations of Coal and Syngas co-Combustion
,”
Entropy
,
22
(
8
), p.
856
.
19.
Choi
,
M.
,
Park
,
Y.
,
Li
,
X.
,
Kim
,
K.
,
Sung
,
Y.
,
Hwang
,
T.
, and
Choi
,
G.
,
2021
, “
Numerical Evaluation of Pulverized Coal Swirling Flames and NOX Emissions in a Coal-Fired Boiler: Effects of Co-and Counter-Swirling Flames and Coal Injection Modes
,”
Energy
,
217
, p.
119439
.
20.
Liu
,
Q.
,
Zhong
,
W.
, and
Yu
,
A.
,
2019
, “
Oxy-Fuel Combustion Behaviors in a Fluidized Bed: A Combined Experimental and Numerical Study
,”
Powder Technol.
,
349
, pp.
40
51
.
21.
Farid
,
M. M.
,
Jeong
,
H. J.
,
Kim
,
K. H.
,
Lee
,
J.
,
Kim
,
D.
, and
Hwang
,
J.
,
2017
, “
Numerical Investigation of Particle Transport Hydrodynamics and Coal Combustion in an Industrial-Scale Circulating Fluidized Bed Combustor: Effects of Coal Feeder Positions and Coal Feeding Rates
,”
Fuel
,
192
, pp.
187
200
.
22.
Liu
,
Y.
,
Wang
,
Z.
, and
Tang
,
H.
,
2020
, “
Numerical Investigation of Turbulent Premixed Combustion in a High Acceleration Field
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
4
), p.
041010
.
23.
Dash
,
K.
, and
Samantaray
,
S.
,
2022
, “
Lean Premixed Combustion of Raw Biogas Interchangeability in a Porous Radiant Burner Operated in the Submerged Mode
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091015
.
24.
Ma
,
G. Y.
,
Wan
,
G. Z.
,
Li
,
Y.
,
Chen
,
H. W.
, and
Zhang
,
S. S.
,
2023
, “
Simulation of Heat and Mass Transfer in Pulverized Coal Boiler Based on Gaseous Combustion Through Phase Separation Technique
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
3
), p.
031008
.
25.
Guo
,
X.
,
Fan
,
J.
,
Bai
,
H.
,
Zhang
,
Z.
,
Bi
,
D.
,
Dong
,
J. C.
,
Zhang
,
J.
,
Zhu
,
Z. X.
,
Zhang
,
J.
, and
Yu
,
J.
,
2019
, “
A Numerical Investigation of NOx Concentration at the Outlet of a Coal-Fired Chain Grate Boiler
,”
Energy Sources, Part A
, pp.
1
10
.
26.
Liu
,
H.
,
Li
,
J.
, and
Wang
,
Q.
,
2017
, “
Simulation of Gas–Solid Flow Characteristics in a Circulating Fluidized Bed Based on a Computational Particle Fluid Dynamics Model
,”
Power Technol.
,
321
, pp.
132
142
.
You do not currently have access to this content.