Abstract

In order to estimate the average and stagnation Nusselt numbers for turbulent flow for impingement cooling of a flat plate with a helically coiled air jet, a new artificial neural network (ANN) model is presented in the present study. A new dataset of stagnation and average Nusselt numbers as a function of Reynolds number (Re) varied from 5000 to 30,000, nozzle plate spacing ratio changed from 2 to 8, and jet helical angles of 0 deg, 20 deg, 30 deg, 40 deg, and 60 deg was created based on an experimental investigation. The ANN structure is composed of three layers with hidden neurons of 14–10–8. The training process comprises feed-forward propagation of the selected input parameters, back-propagation with biases and weight adjustments, and loss function evaluation for the training and validation datasets. The activation function of the output layer is a linear function, and the rectified linear unit activation function is utilized in the hidden layers. The adaptive moment estimation algorithm is employed to minimize the loss function to accelerate the ANN training. To prevent an increase in training time caused by the marked discrepancy in the gradients of loss function considering the values of the weights, the “MinMax” normalization strategy was used. For the ANN model, the mean absolute percent error values were 2.35% for the average Nusselt number and 2.52% for the stagnation Nusselt number. According to the comparison of projected data with the outcomes of earlier experiments, the derived model’s performance was validated and the findings showed outstanding accuracy.

References

1.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.
2.
Singh
,
D.
,
Premachandran
,
B.
, and
Kohli
,
S.
,
2015
, “
Effect of Nozzle Shape on Jet Impingement Heat Transfer From a Circular Cylinder
,”
Int. J. Therm. Sci.
,
96
, pp.
45
69
.
3.
Trinh
,
X. T.
,
Fénot
,
M.
, and
Dorignac
,
E.
,
2016
, “
The Effect of Nozzle Geometry on Local Convective Heat Transfer to Unconfined Impinging Air Jets
,”
Exp. Therm. Fluid. Sci.
,
70
, pp.
1
16
.
4.
Wang
,
B.
,
Lin
,
D.
,
Xie
,
Q.
,
Wang
,
Z.
, and
Wang
,
G.
,
2016
, “
Heat Transfer Characteristics During Jet Impingement on a High-Temperature Plate Surface
,”
Appl. Therm. Eng.
,
100
, pp.
902
910
.
5.
Yan
,
X.
, and
Saniei
,
N.
,
1997
, “
Heat Transfer From an Obliquely Impinging Circular, Air Jet to a Flat Plate
,”
Int. J. Heat Fluid Flow
,
18
(
6
), pp.
591
599
.
6.
Zhao
,
W.
,
Kumar
,
K.
, and
Mujumdar
,
A.
,
2004
, “
Flow and Heat Transfer Characteristics of Confined Noncircular Turbulent Impinging Jets
,”
Drying Technol.
,
22
(
9
), pp.
2027
2049
.
7.
Lee
,
D. H.
,
Song
,
J.
, and
Jo
,
M. C.
,
2004
, “
The Effects of Nozzle Diameter on Impinging Jet Heat Transfer and Fluid Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
4
), pp.
554
557
.
8.
Wae-hayee
,
M.
,
Tekasakul
,
P.
, and
Nuntadusit
,
C.
,
2013
, “
Influence of Nozzle Arrangement on Flow and Heat Transfer Characteristics of Arrays of Circular Impinging Jets
,”
Songklanakarin J. Sci. Technol.
,
35
(
2
), pp.
203
212
.
9.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M.
, and
Button
,
B.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
10.
Wen
,
Z.-X.
,
He
,
Y.-L.
,
Cao
,
X.-W.
, and
Yan
,
C.
,
2016
, “
Numerical Study of Impinging Jets Heat Transfer With Different Nozzle Geometries and Arrangements for a Ground Fast Cooling Simulation Device
,”
Int. J. Heat Mass Transfer
,
95
, pp.
321
335
.
11.
Gulati
,
P.
,
Katti
,
V.
, and
Prabhu
,
S.
,
2009
, “
Influence of the Shape of the Nozzle on Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet
,”
Int. J. Therm. Sci.
,
48
(
3
), pp.
602
617
.
12.
Attalla
,
M.
, and
Specht
,
E.
,
2009
, “
Heat Transfer Characteristics From In-Line Arrays of Free Impinging Jets
,”
Heat Mass Transfer
,
45
(
5
), pp.
537
543
.
13.
Liu
,
X.
,
Lienhard
,
J. H.
, and
Lombara
,
V. J. S.
,
1991
, “
Convective Heat Transfer by Impingement of Circular Liquid Jets
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
3
), pp.
571
582
.
14.
Liu
,
X.
,
Gabour
,
L. A.
, and
Lienhard, V
,
J. H.
,
1993
, “
Stagnation-Point Heat Transfer During Impingement of Laminar Liquid Jets: Analysis Including Surface Tension
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
1
), pp.
99
105
.
15.
Anwarullah
,
M.
,
Rao
,
V. V.
, and
Sharma
,
K.
,
2012
, “
Effect of Nozzle Spacing on Heat Transfer and Fluid Flow Characteristics of an Impinging Circular Jet in Cooling of Electronic Components
,”
Int. J. Therm. Environ. Eng.
,
4
(
1
), pp.
7
12
.
16.
Lytle
,
D.
, and
Webb
,
B.
,
1994
, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
,
37
(
12
), pp.
1687
1697
.
17.
Gao
,
L.
,
2003
,
Effect of Jet Hole Arrays Arrangement on Impingement Heat Transfer
,
Louisiana State University and Agricultural & Mechanical College
,
Baton Rouge, LA
.
18.
Attalla
,
M.
,
Maghrabie
,
H. M.
,
Qayyum
,
A.
,
Al-Hasnawi
,
A. G.
, and
Specht
,
E.
,
2017
, “
Influence of the Nozzle Shape on Heat Transfer Uniformity for In-Line Array of Impinging Air Jets
,”
Appl. Therm. Eng.
,
120
, pp.
160
169
.
19.
Persoons
,
T.
,
McGuinn
,
A.
, and
Murray
,
D. B.
,
2011
, “
A General Correlation for the Stagnation Point Nusselt Number of an Axisymmetric Impinging Synthetic Jet
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3900
3908
.
20.
Zhang
,
Y.
,
Liu
,
B.
,
Wei
,
J.
,
Sundén
,
B.
, and
Wu
,
Z.
,
2018
, “
Heat Transfer Correlations for Jet Impingement Boiling Over Micro-Pin-Finned Surface
,”
Int. J. Heat Mass Transfer
,
126
, pp.
401
413
.
21.
Attalla
,
M.
,
Maghrabie
,
H. M.
, and
Specht
,
E.
,
2017
, “
Effect of Inclination Angle of a Pair of Air Jets on Heat Transfer Into the Flat Surface
,”
Exp. Therm. Fluid. Sci.
,
85
, pp.
85
94
.
22.
Wei
,
T.
,
Oprins
,
H.
,
Fang
,
L.
,
Cherman
,
V.
,
Beyne
,
E.
, and
Baelmans
,
M.
,
2022
, “
Heat Transfer and Pressure Drop Correlations for Direct On-Chip Microscale Jet Impingement Cooling With Alternating Feeding and Draining Jets
,”
Int. J. Heat Mass Transfer
,
182
, p.
121865
.
23.
Kumar
,
N.
,
Kumar
,
A.
, and
Maithani
,
R.
,
2020
, “
Development of New Correlations for Heat Transfer and Pressure Loss Due to Internal Conical Ring Obstacles in an Impinging Jet Solar Air Heater Passage
,”
Therm. Sci. Eng. Prog.
,
17
, p.
100493
.
24.
Choi
,
W.-W.
, and
Kim
,
S.-M.
,
2022
, “
Effect of Effusion Hole Arrangement on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
192
, p.
122900
.
25.
Attalla
,
M.
, and
Salem
,
M.
,
2013
, “
Effect of Nozzle Geometry on Heat Transfer Characteristics From a Single Circular Air Jet
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
723
733
.
26.
Baffigi
,
F.
, and
Bartoli
,
C.
,
2010
, “
Heat Transfer Enhancement in Natural Convection Between Vertical and Downward Inclined Wall and Air by Pulsating Jets
,”
Exp. Therm. Fluid. Sci.
,
34
(
7
), pp.
943
953
.
27.
Ingole
,
S.
, and
Sundaram
,
K.
,
2016
, “
Experimental Average Nusselt Number Characteristics With Inclined Non-Confined Jet Impingement of Air for Cooling Application
,”
Exp. Therm. Fluid. Sci.
,
77
, pp.
124
131
.
28.
Taylor
,
J. R.
, and
Thompson
,
W.
,
1982
,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
, Vol.
2
,
Springer
,
New York
.
29.
Mehrotra
,
K.
,
Mohan
,
C. K.
, and
Ranka
,
S.
,
1997
,
Elements of Artificial Neural Networks
,
MIT Press
,
Cambridge, MA
.
30.
Alanis
,
A. Y.
,
Arana-Daniel
,
N.
, and
Lopez-Franco
,
C.
,
2019
,
Artificial Neural Networks for Engineering Applications
,
Academic Press
,
Cambridge, MA
.
31.
Haykin
,
S.
,
2009
,
Neural Networks and Learning Machines, 3/E
,
Pearson Education India
,
Uttar Pradesh, India
.
32.
Guez
,
S.
,
1988
, “
A Neuromorphic Controller With a Human Teacher
,”
IEEE 1988 International Conference on Neural Networks
,
San Diego, CA
,
July 24–27
, IEEE, pp.
595
602
.
33.
Guez
,
A.
, and
Selinsky
,
J.
,
1988
, “
A Trainable Controller Based on Neural Network
,”
Neural Netw.
,
1
, p.
336
.
34.
Troudet
,
T.
, and
Merrill
,
W. C.
,
1989
, “
Neuromorphic Learning of Continuous-Valued Mappings in the Presence of Noise: Application to Real-Time Adaptive Control
,”
International Conference on Neural Networks
,
Washington, DC
,
June 18-22
, p. E-4706.
35.
Infis
,
A.
, and
Moore
,
W.
,
1988
, “
Economic Approach to Fault-Tolerant Synchronisation
,”
IEEE Proc. E (Comput. Digit. Tech.)
,
135
(
2
), pp.
82
86
.
36.
Ghahdarijani
,
A. M.
,
Hormozi
,
F.
, and
Asl
,
A. H.
,
2017
, “
Convective Heat Transfer and Pressure Drop Study on Nanofluids in Double-Walled Reactor by Developing an Optimal Multilayer Perceptron Artificial Neural Network
,”
Int. Commun. Heat Mass Transfer
,
84
, pp.
11
19
.
37.
Park
,
S. Y.
,
Park
,
Y. G.
,
Park
,
S. H.
, and
Ha
,
M. Y.
,
2021
, “
Numerical Study and Multilayer Perceptron-Based Prediction of Melting Process in the Latent Heat Thermal Energy Storage System With a Finned Elliptical Inner Cylinder
,”
J. Energy Storage
,
42
, p.
103008
.
38.
Deka
,
M. J.
,
Kalita
,
P.
,
Das
,
D.
,
Kamble
,
A. D.
,
Bora
,
B. J.
,
Sharma
,
P.
, and
Medhi
,
B. J.
,
2023
, “
An Approach Towards Building Robust Neural Networks Models Using Multilayer Perceptron Through Experimentation on Different Photovoltaic Thermal Systems
,”
Energy Convers. Manage.
,
292
, p.
117395
.
39.
Afzal
,
S.
,
Ziapour
,
B. M.
,
Shokri
,
A.
,
Shakibi
,
H.
, and
Sobhani
,
B.
,
2023
, “
Building Energy Consumption Prediction Using Multilayer Perceptron Neural Network-Assisted Models; Comparison of Different Optimization Algorithms
,”
Energy
,
282
, p.
128446
.
40.
Li
,
Y.
,
Huang
,
X.
,
Huang
,
X.
,
Gao
,
X.
,
Hu
,
R.
,
Yang
,
X.
, and
He
,
Y.-L.
,
2023
, “
Machine Learning and Multilayer Perceptron Enhanced CFD Approach for Improving Design on Latent Heat Storage Tank
,”
Appl. Energy
,
347
, p.
121458
.
41.
Glorot
,
X.
,
Bordes
,
A.
, and
Bengio
,
Y.
,
2011
, “
Deep Sparse Rectifier Neural Networks
,”
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings
,
Fort Lauderdale, FL
,
Apr. 11–13
, pp.
315
323
.
42.
Diederik
,
K.
, and
Jimmy
,
B.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
International Conference on Learning Representations (ICLR 2015)
,
San Diego, CA
,
May 7–9
, pp.
273
297
.
43.
Bishop
,
C. M.
,
1995
,
Neural Networks for Pattern Recognition
,
Oxford University Press
,
Oxford, UK
.
44.
Jayalakshmi
,
T.
, and
Santhakumaran
,
A.
,
2011
, “
Statistical Normalization and Back Propagation for Classification
,”
Int. J. Comput. Theory Eng.
,
3
(
1
), pp.
1793
8201
.
45.
Gholamy
,
A.
,
Kreinovich
,
V.
, and
Kosheleva
,
O.
,
2018
, “
Why 70/30 Or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation
,”
Int. J. Intell. Technol. Appl. Statist.
,
11
(
2
), pp.
105
111
.
46.
Brownlee
,
J.
,
2016
,
Deep Learning With Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras
,
Machine Learning Mastery
,
Online
.
47.
Ke
,
J.
, and
Liu
,
X.
,
2008
, “
Empirical Analysis of Optimal Hidden Neurons in Neural Network Modeling for Stock Prediction
,”
2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application
,
Wuhan, China
,
Dec. 19–20
, Vol. 2, IEEE, pp.
828
832
.
48.
Huang
,
G.-B.
,
2003
, “
Learning Capability and Storage Capacity of Two-Hidden-Layer Feedforward Networks
,”
IEEE Trans. Neural Netw.
,
14
(
2
), pp.
274
281
.
49.
Skrypnik
,
A.
,
Shchelchkov
,
A.
,
Gortyshov
,
Y. F.
, and
Popov
,
I.
,
2022
, “
Artificial Neural Networks Application on Friction Factor and Heat Transfer Coefficients Prediction in Tubes With Inner Helical-Finning
,”
Appl. Therm. Eng.
,
206
, p.
118049
.
50.
Lawrence
,
S.
,
Giles
,
C. L.
, and
Tsoi
,
A. C.
,
1998
, “
What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation
,” Technical Report.
51.
Celik
,
N.
,
2011
, “
Effects of the Surface Roughness on Heat Transfer of Perpendicularly Impinging Co-Axial Jet
,”
Heat Mass Transfer
,
47
(
10
), pp.
1209
1217
.
52.
Beitelmal
,
A. H.
,
Saad
,
M. A.
, and
Patel
,
C. D.
,
2000
, “
Effects of Surface Roughness on the Average Heat Transfer of an Impinging Air Jet
,”
Int. Commun. Heat Mass Transfer
,
27
(
1
), pp.
1
12
.
You do not currently have access to this content.