Abstract

In this paper, a pressure-swirl atomizing nozzle was proposed to improve the atomization characteristics and enhance the heat transfer characteristics. By modifying the structural parameters of the nozzle, the effect of angles of inclined holes on the swirl plate on the heat transfer characteristics was studied, and the structure of the nozzle was optimized based on fluent software. The corresponding relationship between the pressure difference between the inlet and outlet of the nozzle and the flowrate was obtained, which provides a basis for the parameter setting of the discrete phase model. The nozzle was then applied to a spray humidification system of a direct air cooling unit in the power plant. The influences of nozzle arrangements and spray directions on the vacuum degree of the system were studied. The results of the numerical study show that the nozzle with the angle of inclined holes at 45 deg not only has the highest heat transfer efficiency but also has the highest heat transfer uniformity among all the simulated cases. In the air cooling unit of the power plant, when the nozzles are arranged in staggered rows and the angle between the spray direction and the positive direction along the height is kept at 15 deg, the heat transfer performance of spray humidification is the best. The vacuum degree of the condenser is the highest.

References

1.
Laurila
,
E.
,
Roenby
,
J.
,
Maakala
,
V.
,
Peltonen
,
P.
,
Kahila
,
H.
, and
Vuorinen
,
V.
,
2019
, “
Analysis of Viscous Fluid Flow in a Pressure-Swirl Atomizer Using Large-Eddy Simulation
,”
Int. J. Multiphase Flow
,
113
, pp.
371
388
.
2.
Laurila
,
E.
,
Koivisto
,
S.
,
Kankkunen
,
A.
,
Saari
,
K.
,
Maakala
,
V.
,
Järvinen
,
M.
, and
Vuorinen
,
V.
,
2020
, “
Computational and Experimental Investigation of a Swirl Nozzle for Viscous Fluids
,”
Int. J. Multiphase Flow
,
128
, p.
103278
.
3.
Yu
,
H.
,
Jin
,
Y.-C.
,
Cheng
,
W.
,
Yang
,
X.
,
Peng
,
X.
, and
Xie
,
Y.
,
2021
, “
Multiscale Simulation of Atomization Process and Droplet Particles Diffusion of Pressure-Swirl Nozzle
,”
Powder Technol.
,
379
, pp.
127
143
.
4.
Seyedin
,
S. H.
,
Ahmadi
,
M.
, and
Seyedin
,
S. V.
,
2019
, “
Design and Construction of the Pressure Swirl Nozzle and Experimental Investigation of Spray Characteristics
,”
Tehnički Glasnik
,
13
(
3
), pp.
204
212
.
5.
Chen
,
S.
, and
Ashgriz
,
N.
,
2022
, “
Droplet Size Distribution in Swirl Nozzles
,”
Int. J. Multiphase Flow
,
156
, p.
104219
.
6.
Bang
,
B.-H.
,
Ahn
,
C.-S.
,
Yoon
,
S. S.
, and
Yarin
,
A. L.
,
2023
, “
Breakup of Swirling Films Issued From a Pressure-Swirl Atomizer
,”
Fuel
,
332
, p.
125847
.
7.
Wang
,
K.
,
Fan
,
X.
,
Liu
,
F.
,
Liu
,
C.
,
Lu
,
H.
, and
Xu
,
G.
,
2021
, “
Experimental Studies on Fuel Spray Characteristics of Pressure-Swirl Atomizer and Air-Blast Atomizer
,”
J. Therm. Sci.
,
30
(
2
), pp.
729
741
.
8.
Liu
,
Z.
,
Lin
,
J.
,
Zheng
,
H.
, and
Pang
,
Y.
,
2020
, “
Effect of Viscosities on the Spray Characteristics of Pressure Swirl Nozzle
,”
J. Appl. Fluid Mech.
,
13
(
3
), pp.
861
870
.
9.
Shen
,
L.
,
Fang
,
G.
,
Wang
,
S.
,
Xing
,
F.
, and
Chan
,
S.
,
2022
, “
Numerical Study of the Secondary Atomization Characteristics and Droplet Distribution of Pressure Swirl Atomizers
,”
Fuel
,
324
, p.
124643
.
10.
Bandaru
,
S. V. R.
,
Villanueva
,
W.
,
Konovalenko
,
A.
,
Komlev
,
A.
,
Thakre
,
S.
,
Sköld
,
P.
, and
Bechta
,
S.
,
2020
, “
Upward-Facing Multi-Nozzle Spray Cooling Experiments for External Cooling of Reactor Pressure Vessels
,”
Int. J. Heat Mass Transfer
,
163
, p.
120516
.
11.
Bandaru
,
S. V. R.
,
Villanueva
,
W.
,
Thakre
,
S.
, and
Bechta
,
S.
,
2021
, “
Multi-nozzle Spray Cooling of a Reactor Pressure Vessel Steel Plate for the Application of Ex-Vessel Cooling
,”
Nucl. Eng. Des.
,
375
, p.
111101
.
12.
Bian
,
J.
,
Zhang
,
D.
,
Sun
,
R.
,
Wu
,
Y.
,
Tian
,
W.
,
Su
,
G.
, and
Qiu
,
S.
,
2019
, “
Experimental Study on Spray Characteristics of Pressure-Swirl Nozzle in China Advanced PWR Containment
,”
Nucl. Eng. Des.
,
350
, pp.
158
175
.
13.
Mamidi
,
V. R.
,
Ghanshyam
,
C.
,
Patel
,
M. K.
, and
Kapur
,
P.
,
2012
, “
Electrostatic Hand Pressure Swirl Nozzle for Small Crop Growers
,”
Int. J. Appl. Sci. Technol. Res. Excellence
,
2
(
2
), pp.
164
168
. http://csioir.csio.res.in/id/eprint/313
14.
Laryea
,
G. N.
, and
No
,
S.-Y.
,
2003
, “
Development of Electrostatic Pressure-Swirl Nozzle for Agricultural Applications
,”
J. Electrost.
,
57
(
2
), pp.
129
142
.
15.
Li
,
J.
,
Bai
,
Y.
, and
Li
,
B.
,
2018
, “
Operation of air Cooled Condensers for Optimised Back Pressure at Ambient Wind
,”
Appl. Therm. Eng.
,
128
, pp.
1340
1350
.
16.
Shi
,
L.
,
Shi
,
C.
,
Wang
,
J.
, and
Wu
,
X.
,
2009
, “
Numerical Investigation of Influence on Heat Transfer Performance of Direct air Cooled Condenser Under Different Wind Directions
,”
Proceeding 2009 International Joint Conference on Computational Sciences and Optimization
,
Sanya, China
,
Apr. 24–26
, pp.
378
382
.
17.
Zhao
,
W.
, and
Liu
,
P.
,
2009
, “
Effect of Wind on Recirculation of Direct Air-Cooled Condenser for a Large Power Plant
,”
Proceeding 2009 Asia-Pacific Power and Energy Engineering Conference
,
Wuhan, China
,
Mar. 27–31
, pp.
1
4
.
18.
Xiao
,
L.
,
Ge
,
Z.
,
Yang
,
L.
, and
Du
,
X.
,
2018
, “
Numerical Study on Performance Improvement of Air-Cooled Condenser by Water Spray Cooling
,”
Int. J. Heat Mass Transfer
,
125
, pp.
1028
1042
.
19.
Alkhedhair
,
A.
,
Guan
,
Z.
,
Jahn
,
I.
,
Gurgenci
,
H.
, and
He
,
S.
,
2015
, “
Water Spray for Pre-Cooling of Inlet Air for Natural Draft Dry Cooling Towers–Experimental Study
,”
Int. J. Therm. Sci.
,
90
, pp.
70
78
.
20.
Heyns
,
J. A.
,
2008
,
Performance Characteristics of an Air-Cooled Steam Condenser Incorporating a Hybrid (Dry/Wet) Dephlegmator.
Stellenbosch University
,
Stellenbosch
.
21.
Zhou
,
Y.
,
Cheng
,
Y.-l.
,
Zhang
,
N.
, and
Shi
,
H.-b.
,
2019
, “
Numerical Simulation Study of Novel Air-Cooled Condenser With Lateral Air Supply
,”
Case Stud. Therm. Eng.
,
13
, p.
100354
.
22.
Gao
,
X.
,
Zhang
,
C.
,
Wei
,
J.
, and
Yu
,
B.
,
2009
, “
Numerical Simulation of Heat Transfer Performance of an Air-Cooled Steam Condenser in a Thermal Power Plant
,”
Heat Mass Transfer
,
45
(
11
), pp.
1423
1433
.
23.
Zhang
,
J.
,
2013
,
Study on Flow and Heat Transfer Characteristics of Spray Cooling System for Direct Air Cooled Condenser.
University of China Academy of Sciences
,
Beijing
. (In Chinese with English abstract)
24.
Hui
,
X.
,
2012
,
The Structure Optimization for Spray Humidification System of Direct Air-Cooling Unit.
North China Electric Power University
,
Baoding
. (In Chinese with English abstract)
25.
Fu
,
W.
,
Cai
,
Z.
,
Wang
,
L.
, and
Dong
,
S.
,
2023
, “
Numerical Simulation of the Influence of Swirl Structure Parameters on Atomization Characteristics of Pressure Swirl Nozzle
,”
J. North China Electr. Power Univ., Nat. Sci. Ed.
, pp.
1
9
. https://kns.cnki.net/kcms/detail/13.1212.TM.20230424.1537.002.html
26.
Chen
,
X.
, and
Derby
,
M. M.
,
2018
, “
Droplet Departure Modeling and a Heat Transfer Correlation for Dropwise Flow Condensation in Hydrophobic Mini-Channels
,”
Int. J. Heat Mass Transfer
,
125
, pp.
1096
1104
.
27.
ANSYS Inc.
,
2021
,
ANSYS Fluent Theory Guide.
Canonsburg, PA, USA
.
28.
Huang
,
L.
, and
El-Genk
,
M.
,
1998
, “
Heat Transfer and Flow Visualization Experiments of Swirling, Multi-Channel, and Conventional Impinging Jets
,”
Int. J. Heat Mass Transfer
,
41
(
3
), pp.
583
600
.
29.
Fan
,
Z.
,
2010
,
Study on Impacts of Air-Cooled Island’s Heat Transfer Performance Caused by Spray Cooling System.
North China Electric Power University
,
Baoding
. (In Chinese with English abstract)
You do not currently have access to this content.