Abstract

Ranque–Hilsch vortex tubes have the extraordinary ability to split an incoming stream of fluid into two streams—one with a lower absolute total temperature than the incoming flow and the other with greater total temperature. The physical mechanism involves inducing an intense swirl of the flow down the length of the tube. The warmer flow exits around the periphery at the end of the tube, while the cooler central flow changes direction within the core and exits the opposite end. While much research has focused on the physical mechanisms of the energy separation, relatively little attention has been paid to the heat transfer behavior should a heat flux be applied to the walls. In the present work, experiments were performed using a vortex tube with air and varying levels of heat addition, up to approximately 15 kW/m2. Companion computational experiments were performed that allowed the determination of axially resolved Nusselt number distributions, the first of their kind for vortex tube flows. A notable finding is that the vast majority of heat added to the vortex tube flow remains within the hot stream; i.e., the cold stream experiences relatively little temperature rise due to the heat addition. For example, even when only 30% of the flow exits the hot side of the tube, it retains more than 80% of the heat added to the flow. Additionally, a modified swirl number was also defined that was found to scale the Nusselt number augmentation across the two different total flowrates examined presently.

References

1.
Ranque
,
G. J.
,
1933
, “French Patent: 743,111. Procédé et Appareil Permettant d’obtenir, à Partir d’un Fluide Sous Pression, Deux Courants de Fluide de Températures Différentes.”.
2.
Ranque
,
G. J.
,
1934
, “United States Patent: 1,952,281. Method and Apparatus for Obtaining From a Fluid Under Pressure Two Outputs of Fluid at Different Temperatures”.
3.
Hilsch
,
R.
,
1947
, “
The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process
,”
Rev. Sci. Instrum.
,
18
(
2
), pp.
108
113
.
4.
Stephan
,
K.
,
Lin
,
S.
,
Durst
,
M.
,
Huang
,
F.
, and
Seher
,
D.
,
1983
, “
An Investigation of Energy Separation in a Vortex Tube
,”
Int. J. Heat Mass Transf.
,
26
(
3
), pp.
341
348
.
5.
Cartlidge
,
J.
,
Chowdhury
,
N.
, and
Povey
,
T.
,
2022
, “
Performance Characteristics of a Divergent Vortex Tube
,”
Int. J. Heat Mass Transf.
,
186
, p.
122497
.
6.
Fulton
,
C. D.
,
1950
, “
Ranque’s Tube
,”
Refrig. Eng.
,
58
(
5
), pp.
473
479
.
7.
Scheper
,
G. W.
,
1951
, “
The Vortex Tube-Internal Flow Data and a Heat Transfer Theory
,”
Refrig. Eng.
,
59
, pp.
985
989
.
8.
Scheller
,
W. A.
,
1957
, “
The Ranque-Hilsch Vortex Tube
,”
Fluid Mech. Chem. Eng.
,
49
(
6
), pp.
1013
1016
.
9.
Sibulkin
,
M.
,
1962
, “
Unsteady, Viscous, Circular Flow Part 3. Application to the Ranque-Hilsch Vortex Tube
,”
J. Fluid Mech.
,
12
(
02
), p.
269
.
10.
Bruun
,
H. H.
,
1969
, “
Experimental Investigation of the Energy Separation in Vortex Tubes
,”
J. Mech. Eng. Sci.
,
11
(
6
), pp.
567
582
.
11.
Lin
,
S.
,
Chen
,
J.
, and
Vatistas
,
G. H.
,
1990
, “
A Heat Transfer Relation for Swirl Flow in a Vortex Tube
,”
Can. J. Chem. Eng.
,
68
(
6
), pp.
944
947
.
12.
Behera
,
U.
,
Paul
,
P. J.
,
Kasthurirengan
,
S.
,
Karunanithi
,
R.
,
Ram
,
S. N.
,
Dinesh
,
K.
, and
Jacob
,
S.
,
2005
, “
CFD Analysis and Experimental Investigations Towards Optimizing the Parameters of Ranque-Hilsch Vortex Tube
,”
Int. J. Heat Mass Transf.
,
48
(
10
), pp.
1961
1973
.
13.
Aljuwayhel
,
N. F.
,
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2005
, “
Parametric and Internal Study of the Vortex Tube Using a CFD Model
,”
Int. J. Refrig.
,
28
(
3
), pp.
442
450
.
14.
Kreith
,
F.
, and
Margolis
,
D.
,
1959
, “
Heat Transfer and Friction in Turbulent Vortex Flow
,”
Appl. Sci. Res.
,
8
(
1
), pp.
457
473
.
15.
Blum
,
H. A.
, and
Oliver
,
L. R.
,
1966
, “
Heat Transfer in a Decaying Vortex System
,”
Winter Annual Meeting and Energy Systems Exposition of the American Society of Mechanical Engineers, 66-WA/HT-62
,
New York, NY
,
Nov. 27–Dec. 1
, pp.
1
8
.
16.
Hay
,
N.
, and
West
,
P. D.
,
1975
, “
Heat Transfer in Free Swirling Flow in a Pipe
,”
ASME J. Heat Transfer-Trans. ASME
,
97
(
3
), pp.
411
416
.
17.
Sheen
,
H. J.
,
Chen
,
W. J.
,
Jeng
,
S. Y.
, and
Huang
,
T. L.
,
1996
, “
Correlation of Swirl Number for a Radial-Type Swirl Generator
,”
Exp. Therm. Fluid. Sci.
,
12
(
4
), pp.
444
451
.
18.
Lopina
,
R. F.
, and
Bergles
,
A. E.
,
1967
, “
Heat Transfer and Pressure Drop in Tape Generated Swirl Flow
,” Technical Report No. 70281–47,
Massachusetts Institute of Technology
, pp.
1
150
.
19.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1999
, “
Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal Cooling
,”
ASME J. Turbomach.
,
121
(
4
), pp.
804
813
.
20.
Salce
,
A.
, and
Simon
,
T. W.
,
1991
, “
Investigation of the Effects of Flow Swirl on Heat Transfer Inside a Cylindrical Cavity
,”
ASME J. Heat Transfer-Trans. ASME
,
113
(
2
), pp.
348
354
.
21.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propuls. Power
,
22
(
2
), pp.
249
270
.
22.
Fuqua
,
M. N.
, and
Rutledge
,
J. L.
,
2022
, “
An Experimental Investigation of the Governing Properties in a Vortex Tube
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
3
), p.
031009
.
23.
John
,
J. E. A.
,
1984
,
Gas Dynamics
,
Allyn & Bacon
,
Boston, MA
.
24.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Gaithersburg, MD.
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
26.
ANSYS, Inc.
,
2010
, “
ANSYS FLUENT Theory Guide
,” pp.
114
118
.
27.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
28.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
29.
Fuqua
,
M. N.
, and
Rutledge
,
J. L.
,
2022
, “
A New Nondimensionalization of Vortex Tube Temperature Separation
,”
J. Thermophys. Heat Transf.
,
36
(
4
), pp.
930
939
.
30.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Cambridge, MA
, pp.
167
183
.
31.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
,
McGraw Hill
,
New York City, NY
, p.
297
.
You do not currently have access to this content.