Abstract

The present computational investigation aims to investigate the effect of varied buoyancy ratios on mixed convection and entropy formation in a lid-driven trapezoidal enclosure under magnetic field with two rotating cylinders. The effects of SWCNT–water, Cu–water, and Al2O3–water nanofluids individually, as well as effects of three different types of SWCNT–Cu–Al2O3–water hybrid nanofluids are examined. The governing Navier–Stokes, thermal energy, and mass conservation equations are solved using the Galerkin weighted residual finite element method to obtain results as average Nusselt number, Sherwood number, temperature, and Bejan number as output parameters inside the enclosure for different parameter values. Then, an innovative artificial neural network model for effective prediction is created using the simulation data. The optimum values of each of these input parameters are obtained by finite element method (FEM) and artificial neural network (ANN), and a comparative study between FEM and ANN is done to get best results for the output parameters. The performance of the created ANN model for novel scenarios is evaluated using Cu–Al2O3–water hybrid nanofluid. The proposed innovative ANN model predicts the findings with less time and sufficient accuracy for each type of studied governing fluids. The model’s accuracy for predicting convective heat and mass transfer, along with average dimensionless temperature and Bejan number, was 96.81% and 98.74%, respectively, when tested on training and validation data. On test data, the accuracy was 97.03% for convective heat and mass transfer and 99.17% for average dimensionless temperature and Bejan number.

References

1.
Godson
,
L.
,
Raja
,
B.
,
Mohan Lal
,
D.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids-An Overview
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
629
641
.
2.
Haddad
,
Z.
,
Oztop
,
H. F.
,
Abu-Nada
,
E.
, and
Mataoui
,
A.
,
2012
, “
A Review on Natural Convective Heat Transfer of Nanofluids
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5363
5378
.
3.
Talebi
,
F.
,
Mahmoudi
,
A. H.
, and
Shahi
,
M.
,
2010
, “
Numerical Study of Mixed Convection Flows in a Square Lid-Driven Cavity Utilizing Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
79
90
.
4.
Sebdani
,
S. M.
,
Mahmoodi
,
M.
, and
Hashemi
,
S. M.
,
2012
, “
Effect of Nanofluid Variable Properties on Mixed Convection in a Square Cavity
,”
Int. J. Therm. Sci.
,
52
(
1
), pp.
112
126
.
5.
Khorasanizadeh
,
H.
,
Nikfar
,
M.
, and
Amani
,
J.
,
2013
, “
Entropy Generation of Cu–Water Nanofluid Mixed Convection in a Cavity
,”
Eur. J. Mech. B Fluids
,
37
, pp.
143
152
.
6.
Abu-Nada
,
E.
, and
Chamkha
,
A. J.
,
2014
, “
Mixed Convection Flow of a Nanofluid in a Lid-Driven Cavity With a Wavy Wall
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
36
47
.
7.
Sarkar
,
J.
,
Ghosh
,
P.
, and
Adil
,
A.
,
2015
, “
A Review on Hybrid Nanofluids: Recent Research, Development and Applications
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
164
177
.
8.
Ali
,
I. R.
,
Alsabery
,
A. I.
,
Bakar
,
N. A.
, and
Roslan
,
R.
,
2020
, “
Mixed Convection in a Double Lid-Driven Cavity Filled With Hybrid Nanofluid by Using Finite Volume Method
,”
Symmetry
,
12
(
12
), p.
1977
.
9.
Hayat
,
T.
, and
Nadeem
,
S.
,
2017
, “
Heat Transfer Enhancement With Ag–CuO/Water Hybrid Nanofluid
,”
Results Phys.
,
7
, pp.
2317
2324
.
10.
Momin
,
G.
,
2013
, “
Experimental Investigation of Mixed Convection with Water-Al2O3 & Hybrid Nanofluid in Inclined Tube for Laminar Flow
,”
Int. J. Sci. Technol. Res.
,
2
(
12
), pp.
195
202
.
11.
Cimpean
,
D. S.
,
Sheremet
,
M. A.
, and
Pop
,
I.
,
2020
, “
Mixed Convection of Hybrid Nanofluid in a Porous Trapezoidal Chamber
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104627
.
12.
Mehryan
,
S. A. M.
,
Izadpanahi
,
E.
,
Ghalambaz
,
M.
, and
Chamkha
,
A. J.
,
2019
, “
Mixed Convection Flow Caused by an Oscillating Cylinder in a Square Cavity Filled with Cu–Al2O3/Water Hybrid Nanofluid
,”
J. Therm. Anal. Calorim.
,
137
(
3
), pp.
965
982
.
13.
Azizul
,
F. M.
,
Alsabery
,
A. I.
,
Hashim
,
I.
, and
Chamkha
,
A. J.
,
2021
, “
Heatline Visualization of Mixed Convection Inside Double Lid-Driven Cavity Having Heated Wavy Wall
,”
J. Therm. Anal. Calorim.
,
145
(
6
), pp.
3159
3176
.
14.
Waini
,
I.
,
Ishak
,
A.
,
Groşan
,
T.
, and
Pop
,
I.
,
2020
, “
Mixed Convection of a Hybrid Nanofluid Flow Along a Vertical Surface Embedded in a Porous Medium
,”
Int. Commun. Heat Mass Transfer
,
114
, p.
104565
.
15.
Elsaid
,
E. M.
, and
Abdel-Wahed
,
M. S.
,
2021
, “
Mixed Convection Hybrid-Nanofluid in a Vertical Channel Under the Effect of Thermal Radiative Flux,” Case Study
,”
Therm. Eng.
,
25
(
Jan.
), p.
100913
.
16.
Mondal
,
P.
, and
Mahapatra
,
T. R.
,
2021
, “
MHD Double-Diffusive Mixed Convection and Entropy Generation of Nanofluid in a Trapezoidal Cavity
,”
Int. J. Mech. Sci.
,
208
(
June
), p.
106665
.
17.
Ching
,
Y. C.
,
Öztop
,
H. F.
,
Rahman
,
M. M.
,
Islam
,
M. R.
, and
Ahsan
,
A.
,
2012
, “
Finite Element Simulation of Mixed Convection Heat and Mass Transfer in a Right Triangular Enclosure
,”
Int. Commun. Heat Mass Transfer
,
39
(
5
), pp.
689
696
.
18.
Hasanuzzaman
,
M.
,
Rahman
,
M. M.
,
Öztop
,
H. F.
,
Rahim
,
N. A.
, and
Saidur
,
R.
,
2012
, “
Effects of Lewis Number on Heat and Mass Transfer in a Triangular Cavity
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1213
1219
.
19.
Chen
,
C. L.
,
Chung
,
Y. C.
, and
Lee
,
T. F.
,
2012
, “
Experimental and Numerical Studies on Periodic Convection Flow and Heat Transfer in a Lid-Driven Arc-Shape Cavity
,”
Int. Commun. Heat Mass Transfer
,
39
(
10
), pp.
1563
1571
.
20.
Kasaeipoor
,
A.
,
Ghasemi
,
B.
, and
Aminossadati
,
S. M.
,
2015
, “
Convection of Cu-Water Nanofluid in a Vented T-Shaped Cavity in the Presence of Magnetic Field
,”
Int. J. Therm. Sci.
,
94
, pp.
50
60
.
21.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2014
, “
Numerical Study of MHD Mixed Convection in a Nanofluid Filled Lid Driven Square Enclosure with a Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
78
, pp.
741
754
.
22.
Azeem
,
Badruddin
,
I. A.
,
Idris
,
M. Y. I.
,
Nik-Ghazali
,
N.
,
Salman Ahmed
,
N. J.
, and
Al-Rashed
,
A. A. A. A.
,
2016
, “
Conjugate Heat and Mass Transfer in Square Porous Cavity
,”
Indian J. Pure Appl. Phys.
,
54
(
12
), pp.
777
786
.
23.
Liao
,
C. C.
, and
Lin
,
C. A.
,
2014
, “
Mixed Convection of a Heated Rotating Cylinder in a Square Enclosure
,”
Int. J. Heat Mass Transfer
,
72
, pp.
9
22
.
24.
Costa
,
V. A. F.
,
2004
, “
Double-Diffusive Natural Convection in Parallelogrammic Enclosures
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
2913
2926
.
25.
Sivakumar
,
V.
,
Sivasankaran
,
S.
,
Prakash
,
P.
, and
Lee
,
J.
,
2010
, “
Effect of Heating Location and Size on Mixed Convection in Lid-Driven Cavities
,”
Comput. Math. Appl.
,
59
(
9
), pp.
3053
3065
.
26.
Sivasankaran
,
S.
,
Sivakumar
,
V.
, and
Prakash
,
P.
,
2010
, “
Numerical Study on Mixed Convection in a Lid-Driven Cavity With Non-Uniform Heating on Both Sidewalls
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4304
4315
.
27.
Çolak
,
E.
,
Ekici
,
Ö
, and
Öztop
,
H. F.
,
2021
, “
Mixed Convection in a Lid-Driven Cavity With Partially Heated Porous Block
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
10450
.
28.
Chamkha
,
A. J.
,
Selimefendigil
,
F.
, and
Ismael
,
M. A.
,
2016
, “
Mixed Convection in a Partially Layered Porous Cavity With an Inner Rotating Cylinder
,”
Numer. Heat Transfer, Part A
,
69
(
6
), pp.
659
675
.
29.
Xu
,
H.
,
Xiao
,
R.
,
Karimi
,
F.
,
Yang
,
M.
, and
Zhang
,
Y.
,
2014
, “
Numerical Study of Double Diffusive Mixed Convection Around a Heated Cylinder in an Enclosure
,”
Int. J. Therm. Sci.
,
78
, pp.
169
181
.
30.
Zheng
,
G. F.
,
Ha
,
M. Y.
,
Yoon
,
H. S.
, and
Park
,
Y. G.
,
2013
, “
A Numerical Study on Mixed Convection in a Lid-Driven Cavity With a Circular Cylinder
,”
J. Mech. Sci. Technol.
,
27
(
1
), pp.
273
286
.
31.
Kareem
,
A. K.
, and
Gao
,
S.
,
2017
, “
Mixed Convection Heat Transfer of Turbulent Flow in a Three-Dimensional Lid-Driven Cavity With a Rotating Cylinder
,”
Int. J. Heat Mass Transfer
,
112
, pp.
185
200
.
32.
Teamah
,
M. A.
, and
El-Maghlany
,
W. M.
,
2010
, “
Numerical Simulation of Double-Diffusive Mixed Convective Flow in Rectangular Enclosure with Insulated Moving Lid
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1625
1638
.
33.
Khanafer
,
K.
, and
Aithal
,
S. M.
,
2017
, “
Mixed Convection Heat Transfer in a Lid-Driven Cavity With a Rotating Circular Cylinder
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
131
142
.
34.
Kareem
,
A. K.
, and
Gao
,
S.
,
2018
, “
Mixed Convection Heat Transfer Enhancement in a Cubic Lid-Driven Cavity Containing a Rotating Cylinder Through the Introduction of Artificial Roughness on the Heated Wall
,”
Phys. Fluids
,
30
(
2
), p.
025103
.
35.
Billah
,
M. M.
,
Rahman
,
M. M.
,
Sharif
,
U. M.
,
Rahim
,
N. A.
,
Saidur
,
R.
, and
Hasanuzzaman
,
M.
,
2011
, “
Numerical Analysis of Fluid Flow Due to Mixed Convection in a Lid-Driven Cavity Having a Heated Circular Hollow Cylinder
,”
Int. Commun. Heat Mass Transfer
,
38
(
8
), pp.
1093
1103
.
36.
Kaneesamkandi
,
Z. M.
,
Shariff
,
M. M.
,
Alammar
,
K. N.
, and
Vilagines
,
R. D.
,
2012
, “
Heat Transfer in Magnetohydrodynamic Fluid Flows—A Review
,”
Res. J. Appl. Sci., Eng. Technol.
,
4
(
15
), pp.
2412
2421
.
37.
Kabeel
,
A. E.
,
El-Said
,
E. M. S.
, and
Dafea
,
S. A.
,
2015
, “
A Review of Magnetic Field Effects on Flow and Heat Transfer in Liquids: Present Status and Future Potential for Studies and Applications
,”
Renewable Sustainable Energy Rev.
,
45
, pp.
830
837
.
38.
Moolya
,
S.
, and
Satheesh
,
A.
,
2020
, “
Role of Magnetic Field and Cavity Inclination on Double Diffusive Mixed Convection in Rectangular Enclosed Domain
,”
Int. Commun. Heat Mass Transfer
,
118
, p.
104814
.
39.
Mohan
,
C. G.
, and
Satheesh
,
A.
,
2015
, “
The Numerical Simulation of Double-Diffusive Mixed Convection Flow in a Lid-Driven Porous Cavity With Magnetohydrodynamic Effect
,”
Arabian J. Sci. Eng.
,
41
(
5
), pp.
1867
1882
.
40.
Hussain
,
S.
, and
Öztop
,
H. F.
,
2021
, “
Impact of Inclined Magnetic Field and Power Law Fluid on Double Diffusive Mixed Convection in Lid-Driven Curvilinear Cavity
,”
Int. Commun. Heat Mass Transfer
,
127
, p.
105549
.
41.
Chatterjee
,
D.
,
Mondal
,
B.
, and
Halder
,
P.
,
2013
, “
Hydromagnetic Mixed Convective Transport in a Vertical Lid-Driven Cavity Including a Heat Conducting Rotating Circular Cylinder
,”
Numer. Heat Transfer, Part A
,
65
(
1
), pp.
48
65
.
42.
Kaya
,
A.
,
2011
, “
The Effect of Conjugate Heat Transfer on MHD Mixed Convection About a Vertical Slender Hollow Cylinder
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
4
), pp.
1905
1916
.
43.
Ishak
,
A.
,
Nazar
,
R.
,
Bachok
,
N.
, and
Pop
,
I.
,
2010
, “
MHD Mixed Convection Flow Adjacent to a Vertical Plate With Prescribed Surface Temperature
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4506
4510
.
44.
Rahman
,
M. M.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2011
, “
Conjugated Effect of Joule Heating and Magneto-Hydrodynamic on Double-Diffusive Mixed Convection in a Horizontal Channel With an Open Cavity
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3201
3213
.
45.
Selimefendigil
,
F.
,
Öztop
,
H. F.
, and
Chamkha
,
A. J.
,
2016
, “
MHD Mixed Convection and Entropy Generation of Nanofluid Filled Lid Driven Cavity Under the Influence of Inclined Magnetic Fields Imposed to Its Upper and Lower Diagonal Triangular Domains
,”
J. Magn. Magn. Mater.
,
406
, pp.
266
281
.
46.
Mahapatra
,
T. R.
,
Saha
,
B. C.
, and
Pal
,
D.
,
2018
, “
Magnetohydrodynamic Double-Diffusive Natural Convection for Nanofluid Within a Trapezoidal Enclosure
,”
Comput. Appl. Math.
,
37
(
5
), pp.
6132
6151
.
47.
Zahmatkesh
,
I.
, and
Habibi Shandiz
,
M. R.
,
2021
, “
MHD Double-Diffusive Mixed Convection of Binary Nanofluids Through a Vertical Porous Annulus Considering Buongiorno’s Two-Phase Model
,”
J. Therm. Anal. Calorim.
,
147
(
2
), pp.
1793
1807
.
48.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2019
, “
MHD Mixed Convection of Nanofluid in a Flexible Walled Inclined Lid-Driven L-Shaped Cavity Under the Effect of Internal Heat Generation
,”
Phys. A
,
534
, p.
122144
.
49.
Selimefendigil
,
F.
, and
Chamkha
,
A. J.
,
2020
, “
MHD Mixed Convection of Nanofluid in a Three-Dimensional Vented Cavity With Surface Corrugation and Inner Rotating Cylinder
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
4
), pp.
1637
1660
.
50.
Selimefendigil
,
F.
, and
Öztop
,
H. F.
,
2014
, “
MHD Mixed Convection of Nanofluid Filled Partially Heated Triangular Enclosure With a Rotating Adiabatic Cylinder
,”
J. Taiwan Inst. Chem. Eng.
,
45
(
5
), pp.
2150
2162
.
51.
Yousefzadeh
,
S.
,
Rajabi
,
H.
,
Ghajari
,
N.
,
Sarafraz
,
M. M.
,
Akbari
,
O. A.
, and
Goodarzi
,
M.
,
2019
, “
Numerical Investigation of Mixed Convection Heat Transfer Behavior of Nanofluid in a Cavity With Different Heat Transfer Areas
,”
J. Therm. Anal. Calorim.
,
140
(
6
), pp.
2779
2803
.
52.
Hussain
,
S.
,
Ahmed
,
S. E.
, and
Akbar
,
T.
,
2017
, “
Entropy Generation Analysis in MHD Mixed Convection of Hybrid Nanofluid in an Open Cavity With a Horizontal Channel Containing an Adiabatic Obstacle
,”
Int. J. Heat Mass Transfer
,
114
, pp.
1054
1066
.
53.
Chen
,
C.-K.
,
Chen
,
B.-S.
, and
Liu
,
C.-C.
,
2015
, “
Entropy Generation in Mixed Convection Magnetohydrodynamic Nanofluid Flow in Vertical Channel
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1026
1033
.
54.
Chamkha
,
A. J.
,
Selimefendigil
,
F.
, and
Oztop
,
H. F.
,
2020
, “
Effects of a Rotating Cone on the Mixed Convection in a Double Lid-Driven 3D Porous Trapezoidal Nanofluid Filled Cavity Under the Impact of Magnetic Field
,”
Nanomaterials
,
10
(
3
), p.
449
.
55.
Chamkha
,
A. J.
,
Mansour
,
M. A.
,
Rashad
,
A. M.
,
Kargarsharifabad
,
H.
, and
Armaghani
,
T.
,
2020
, “
Magnetohydrodynamic Mixed Convection and Entropy Analysis of Nanofluid in Gamma-Shaped Porous Cavity
,”
J. Thermophys. Heat Transfer
,
34
(
4
), pp.
836
847
.
56.
Rashidi
,
M. M.
,
Sadri
,
M.
, and
Sheremet
,
M. A.
,
2021
, “
Numerical Simulation of Hybrid Nanofluid Mixed Convection in a Lid-Driven Square Cavity With Magnetic Field Using High-Order Compact Scheme
,”
Nanomaterials
,
11
(
9
), p.
2250
.
57.
Parveen
,
R.
, and
Mahapatra
,
T. R.
,
2019
, “
Numerical Simulation of MHD Double Diffusive Natural Convection and Entropy Generation in a Wavy Enclosure Filled With Nanofluid with Discrete Heating
,”
Heliyon
,
5
(
9
), pp.
e02496
e02496
.
58.
Armaghani
,
T.
,
Sadeghi
,
M. S.
,
Rashad
,
A. M.
,
Mansour
,
M. A.
,
Chamkha
,
A. J.
,
Dogonchi
,
A. S.
, and
Nabwey
,
H. A.
,
2021
, “
MHD Mixed Convection of Localized Heat Source/Sink in an Al2O3-Cu/Water Hybrid Nanofluid in L-Shaped Cavity
,”
Alexandria Eng. J.
,
60
(
3
), pp.
2947
2962
.
59.
Qureshi
,
M. A.
,
Hussain
,
S.
, and
Sadiq
,
M. A.
,
2021
, “
Numerical Simulations of MHD Mixed Convection of Hybrid Nanofluid Flow in a Horizontal Channel With Cavity: Impact on Heat Transfer and Hydrodynamic Forces,” Case Stud
,”
Therm. Eng.
,
27
(
May
), p.
101321
.
60.
Nahak
,
M.
,
Triveni
,
M.
, and
Panua
,
R.
,
2017
, “
Numerical Investigation of Mixed Convection in a Lid-Driven Triangular Cavity With a Circular Cylinder Using ANN Modeling
,”
Int. J. Heat Technol.
,
35
(
4
), pp.
903
918
.
61.
Rabbi
,
K. M.
,
Sheikholeslami
,
M.
,
Karim
,
A.
,
Shafee
,
A.
,
Li
,
Z.
, and
Tlili
,
I.
,
2020
, “
Prediction of MHD Flow and Entropy Generation by Artificial Neural Network in Square Cavity With Heater-Sink for Nanomaterial
,”
Phys. A
,
541
, p.
123520
.
62.
Filali
,
A.
,
Khezzar
,
L.
,
Semmari
,
H.
, and
Matar
,
O.
,
2021
, “
Application of Artificial Neural Network for Mixed Convection in a Square Lid-Driven Cavity With Double Vertical or Horizontal Oriented Rectangular Blocks
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105644
.
63.
Seo
,
Y. M.
,
Luo
,
K.
,
Ha
,
M. Y.
, and
Park
,
Y. G.
,
2020
, “
Direct Numerical Simulation and Artificial Neural Network Modeling of Heat Transfer Characteristics on Natural Convection With a Sinusoidal Cylinder in a Long Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
,
152
, p.
119564
.
64.
Rahimpour
,
N.
, and
Keshavarz Moraveji
,
M.
,
2017
, “
Free Convection of Water–Fe3 O4 Nanofluid in an Inclined Cavity Subjected to a Magnetic Field: CFD Modeling, Sensitivity Analysis
,”
Adv. Powder Technol.
,
28
(
6
), pp.
1573
1584
.
65.
Afrand
,
M.
,
Toghraie
,
D.
, and
Sina
,
N.
,
2016
, “
Experimental Study on Thermal Conductivity of Water-Based Fe3O4 Nanofluid: Development of a New Correlation and Modeled by Artificial Neural Network
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
262
269
.
66.
Qasem
,
N. A. A.
,
Abderrahmane
,
A.
,
Ahmed
,
S.
,
Younis
,
O.
,
Guedri
,
K.
,
Said
,
Z.
, and
Mourad
,
A.
,
2022
, “
Effect of a Rotating Cylinder on Convective Flow, Heat and Entropy Production of a 3D Wavy Enclosure Filled by a Phase Change Material
,”
Appl. Therm. Eng.
,
214
, p.
118818
.
67.
Hemmat Esfe
,
M.
,
Esfandeh
,
S.
,
Saedodin
,
S.
, and
Rostamian
,
H.
,
2017
, “
Experimental Evaluation, Sensitivity Analyzation and ANN Modeling of Thermal Conductivity of ZnO-MWCNT/EG-Water Hybrid Nanofluid for Engineering Applications
,”
Appl. Therm. Eng.
,
125
, pp.
673
685
.
68.
Rostami
,
S.
,
Kalbasi
,
R.
,
Sina
,
N.
, and
Goldanlou
,
A. S.
,
2020
, “
Forecasting the Thermal Conductivity of a Nanofluid Using Artificial Neural Networks
,”
J. Therm. Anal. Calorim.
,
145
(
4
), pp.
2095
2104
.
69.
Rana
,
P.
,
Kumar
,
A.
, and
Gupta
,
G.
,
2022
, “
Impact of Different Arrangements of Heated Elliptical Body, Fins and Differential Heater in MHD Convective Transport Phenomena of Inclined Cavity Utilizing Hybrid Nanoliquid: Artificial Neutral Network Prediction
,”
Int. Commun. Heat Mass Transfer
,
132
, p.
105900
.
70.
Mohebbi Najm Abad
,
J.
,
Alizadeh
,
R.
,
Fattahi
,
A.
,
Doranehgard
,
M. H.
,
Alhajri
,
E.
, and
Karimi
,
N.
,
2020
, “
Analysis of Transport Processes in a Reacting Flow of Hybrid Nanofluid Around a Bluff-Body Embedded in Porous Media Using Artificial Neural Network and Particle Swarm Optimization
,”
J. Mol. Liq.
,
313
, p.
113492
.
71.
Hemmat Esfe
,
M.
,
Saedodin
,
S.
,
Sina
,
N.
,
Afrand
,
M.
, and
Rostami
,
S.
,
2015
, “
Designing an Artificial Neural Network to Predict Thermal Conductivity and Dynamic Viscosity of Ferromagnetic Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
68
, pp.
50
57
.
72.
Prince
,
H. A.
,
Rozin
,
E. H.
,
Chowdhury
,
E. H.
,
Redwan
,
D. A.
, and
Mamun
,
M. A. H.
,
2021
, “
A Numerical Comparison among Different Water-Based Hybrid Nanofluids on Their Influences on Natural Convection Heat Transfer in a Triangular Solar Collector for Different Tilt Angles
,”
Heat Transf.
,
50
(
5
), pp.
4264
4288
.
73.
Toghraie
,
D.
,
2020
, “
Numerical Simulation on MHD Mixed Convection of Cu-Water Nanofluid in a Trapezoidal Lid-Driven Cavity
,”
Int. J. Appl. Electromagn. Mech.
,
62
(
4
), pp.
683
710
.
74.
Sheikholeslami
,
M.
,
Gorji Bandpy
,
M.
,
Ellahi
,
R.
,
Hassan
,
M.
, and
Soleimani
,
S.
,
2014
, “
Effects of MHD on Cu-Water Nanofluid Flow and Heat Transfer by Means of CVFEM
,”
J. Magn. Magn. Mater.
,
349
, pp.
188
200
.
75.
Prince
,
H. A.
,
Redwan
,
D. A.
,
Rozin
,
E. H.
,
Saha
,
S.
, and
Mamun
,
M. A. H.
,
2021
, “
Augmentation of Pure Mixed Convection Heat Transfer in a Non-Newtonian Power-Law Fluid Filled Lid-Driven Trapezoidal Cavity With Double Rotating Cylinders
,”
ASME. J. Heat Mass Transfer
,
143
(
8
), p.
082601
.
76.
Prince
,
H. A.
,
Rozin
,
E. H.
,
Sagor
,
M. J. H.
, and
Saha
,
S.
,
2022
, “
Evaluation of Overall Thermal Performance for Conjugate Natural Convection in a Trapezoidal Cavity With Different Surface Corrugations
,”
Int. Commun. Heat Mass Transfer
,
130
, p.
105772
.
77.
Saha
,
S.
,
Hossen
,
S.
,
Hasib
,
M. H.
, and
Saha
,
S. C.
,
2014
, “
Onset of Transition in Mixed Convection of a Lid-Driven Trapezoidal Enclosure Filled With Water-Al2O3 Nanofluid
,”
Proceedings of the 19th Australasian Fluid Mechanics Conference Melbourne, Australasian Fluid Mechanics Society (AFMS)
,
Melbourne, Australia
,
Dec. 8–11
, pp.
1
4
.
78.
Meng
,
Z.
,
Hu
,
Y.
, and
Ancey
,
C.
,
2020
, “
Using a Data Driven Approach to Predict Waves Generated by Gravity Driven Mass Flows
,”
Water
,
12
(
2
), p.
600
.
79.
Lecun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
80.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
Conference Track Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015
,
San Diego, CA
,
May 7–9
, pp.
1
15
.
81.
Yaqub
,
M.
,
Jinchao
,
F.
,
Zia
,
M. S.
,
Arshid
,
K.
,
Jia
,
K.
,
Rehman
,
Z. U.
, and
Mehmood
,
A.
,
2020
, “
State-of-the-Art CNN Optimizer for Brain Tumor Segmentation in Magnetic Resonance Images
,”
Brain Sci.
,
10
(
7
), pp.
1
19
.
You do not currently have access to this content.