Abstract

Increasing attention has been paid to the study of heat and moisture migration in soils, but little research has been done on heat and moisture transport in soils containing stones. In this paper, an improved random generation method is proposed to generate soil porous media containing different stones and a fully connected pore. The lattice Boltzmann method (LBM) model for multiphase flow and heat transfer is used to simulate the heat and moisture migration of four types of soils: stone-free, sandstone, limestone, and shale. The simulations show that the presence of rocks impedes the flow of fluids but enhances the heat transfer in the soil. Considering the mesoscopic nature of the LBM and the porous media model construction method, the proposed model has a potential of simulating heat and mass transfer phenomena in multiphase multi-component porous media.

References

1.
Marcotte
,
D.
, and
Pasquier
,
P.
,
2008
, “
On the Estimation of Thermal Resistance in Borehole Thermal Conductivity Test
,”
Renew. Energy
,
33
(
11
), pp.
2407
2415
.
2.
Yuan
,
Y.
,
Cao
,
L.
,
Sun
,
L.
,
Lei
,
B.
, and
Yu
,
Y.
,
2012
, “
Ground Source Heat Pump System: A Review of Simulation in China
,”
Renew. Sustain. Energy Rev.
,
16
(
9
), pp.
6814
6822
.
3.
Li
,
B.
,
Han
,
Z.
,
Bai
,
C.
, and
Hu
,
H.
,
2019
, “
The Influence of Soil Thermal Properties on the Operation Performance on Ground Source Heat Pump System
,”
Renew. Energy
,
141
, pp.
903
913
.
4.
Fan
,
L.
,
Fang
,
H.
, and
Lin
,
Z.
,
2001
, “
Simulation of Contact Line Dynamics in a Two-Dimensional Capillary Tube by the Lattice Boltzmann Model
,”
Phys. Rev. E
,
63
(
5 Pt 1
), p.
051603
.
5.
Philip
,
J. R.
, and
Devries
,
D. A.
,
1957
, “
Moisture Movement in Porous Materials Under Temperature Gradient
,”
Trans. Am. Geophys. Union
,
38
(
2
), pp.
222
232
.
6.
Luikov
,
A. V.
,
1964
, “
Heat and Mass Transfer in Capillary-Porous Bodies
,”
Adv. Heat Transfer
,
1
(
1
), pp.
123
184
.
7.
Taylor
,
S. A.
, and
Cary
,
J. W.
,
1964
, “
Linear Equations for the Simultaneous Flow of Matter and Energy in a Continuous Soil System
,”
Soil Sci. Soc. Am. J.
,
28
(
2
), pp.
167
172
.
8.
Zhang
,
S.
,
Teng
,
J.
,
He
,
Z.
, and
Sheng
,
D.
,
2016
, “
Importance of Vapor Flow in Unsaturated Freezing Soil: A Numerical Study
,”
Cold Regions Sci. Technol.
,
126
, pp.
1
9
.
9.
An
,
N.
,
Hemmati
,
S.
, and
Cui
,
Y.
,
2017
, “
Numerical Analysis of Soil Volumetric Water Content and Temperature Variations in an Embankment Due to Soil-Atmosphere Interaction
,”
Comput. Geotech.
,
83
, pp.
40
51
.
10.
Huang
,
P.
,
Chew
,
Y. M. J.
,
Chang
,
W.-S.
,
Ansell
,
M. P.
,
Lawrence
,
M.
,
Latif
,
E.
,
Shea
,
A.
,
Ormondroyd
,
G.
, and
Du
,
H.
,
2018
, “
Heat and Moisture Transfer Behaviour in Phyllostachys edulis (Moso Bamboo) Based Panels
,”
Construct. Build. Mater.
,
166
, pp.
35
49
.
11.
Mahdavi
,
S. M.
,
Neyshabouri
,
M. R.
, and
Fujimaki
,
H.
,
2018
, “
Water Vapour Transport in a Soil Column in the Presence of an Osmotic Gradient
,”
Geoderma
,
315
, pp.
199
207
.
12.
Aksornkitti
,
S.
,
Rattanadecho
,
P.
, and
Wessapan
,
T.
,
2021
, “
Numerical Investigation of Heat Transfer and Water Infiltration Characteristics Within Two-Dimensional Granular Packed Beds
,”
Case Stud. Therm. Eng.
,
28
, p.
101417
.
13.
Song
,
W.
,
Zhang
,
Y.
,
Li
,
B.
, and
Fan
,
X.
,
2016
, “
A Lattice Boltzmann Model for Heat and Mass Transfer Phenomena With Phase Transformations in Unsaturated Soil During Freezing Process
,”
Int. J. Heat Mass Transfer
,
94
, pp.
29
38
.
14.
Li
,
H.
,
Pan
,
C.
, and
Miller
,
C.
,
2005
, “
Pore-Scale Investigation of Viscous Coupling Effects for Two-Phase Flow in Porous Media
,”
Phys. Rev. E
,
72
(
2
), p.
026705
.
15.
Pan
,
C.
,
Hilpert
,
M.
, and
Miller
,
C.
,
2004
, “
Lattice-Boltzmann Simulation of Two-Phase Flow in Porous Media
,”
Water Resour. Res.
,
40
(
1
), pp.
62
74
.
16.
Zhao
,
H. Y.
,
Liang
,
Z. D.
,
Jeng
,
D.-S.
,
Zhu
,
J. F.
,
Guo
,
Z.
, and
Chen
,
W. Y.
,
2018
, “
Numerical Investigation of Dynamic Soil Response Around a Submerged Rubble Mound Breakwater
,”
Ocean Eng.
,
156
, pp.
406
423
.
17.
Bandara
,
U. C.
,
Tartakovsky
,
A. M.
,
Oostrom
,
M.
,
Palmer
,
B. J.
,
Grate
,
J.
, and
Zhang
,
C.
,
2013
, “
Smoothed Particle Hydrodynamics Pore-Scale Simulations of Unstable Immiscible Flow in Porous Media
,”
Adv. Water Resour.
,
62
, pp.
356
369
.
18.
Lin
,
Q.
,
Wang
,
S.
,
Ma
,
Z.
,
Wang
,
J.
, and
Zhang
,
T.
,
2018
, “
Lattice Boltzmann Simulation of Flow and Heat Transfer Evolution Inside Encapsulated Phase Change Materials Due to Natural Convection Melting
,”
Chem. Eng. Sci.
,
189
, pp.
154
164
.
19.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice-Gas Automata for the Navier-Stokes Equation
,”
Phys. Rev. Lett.
,
56
(
14
), pp.
1505
1508
.
20.
Ramstad
,
T.
,
Berg
,
C. F.
, and
Thompson
,
K.
,
2019
, “
Pore-Scale Simulations of Single- and Two-Phase Flow in Porous Media: Approaches and Applications
,”
Transp. Porous Media
,
130
(
1
), pp.
77
104
.
21.
Xu
,
F.
,
Liang
,
S.
,
Zhang
,
Y.
,
Li
,
B.
, and
Hu
,
Y.
,
2021
, “
Numerical Study of Water-Air Distribution in Unsaturated Soil by Using Lattice Boltzmann Method
,”
Comput. Math. Appl.
,
81
, pp.
573
587
.
22.
Gao
,
D.
,
Chen
,
Z.
,
Chen
,
L.
, and
Zhang
,
D.
,
2017
, “
A Modified Lattice Boltzmann Model for Conjugate Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
105
, pp.
673
683
.
23.
He
,
B.
,
Lu
,
S.
,
Gao
,
D.
,
Chen
,
W.
, and
Lin
,
F.
,
2019
, “
Lattice Boltzmann Simulation of Double Diffusive Natural Convection in Heterogeneously Porous Media of a Fluid With Temperature-Dependent Viscosity
,”
Chin. J. Phys.
,
63
, pp.
186
200
.
24.
Zakirov
,
T. R.
, and
Khramchenkov
,
M. G.
,
2020
, “
Prediction of Permeability and Tortuosity in Heterogeneous Porous Media Using a Disorder Parameter
,”
Chem. Eng. Sci.
,
227
, p.
16
.
25.
Lavee
,
H.
, and
Poesen
,
J.
,
1991
, “
Overland Flow Generation and Continuity on Stone-Covered Soil Surfaces
,”
Hydrol. Process.
,
5
(
4
), pp.
345
360
.
26.
Nayak
,
S.
,
Balaji
,
M.
, and
Preetham
,
H. K.
,
2020
, “
A Study on the Behaviour of Stone Columns in a Layered Soil System
,”
Transport. Infrastr. Geotechnol.
,
7
(
1
), pp.
85
102
.
27.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.
28.
Shan
,
X.
, and
Chen
,
H.
,
1994
, “
Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
49
(
4
), pp.
2941
2948
.
29.
Shan
,
X.
, and
Doolen
,
G.
,
1995
, “
Multi-Component Lattice-Boltzmann Model With Interparticle Interaction
,”
J. Statist. Phys.
,
81
(
1
), pp.
379
393
.
30.
Shan
,
X.
, and
Doolen
,
G.
,
1996
, “
Diffusion in a Multi-component Lattice Boltzmann Equation Model
,”
Phys. Rev. E
,
54
(
4
), pp.
3614
3620
.
31.
Chen
,
L.
,
Kang
,
Q.
,
Mu
,
Y.
,
He
,
Y.
, and
Tao
,
W.
,
2014
, “
A Critical Review of the Pseudopotential Multiphase Lattice Boltzmann Model: Methods and Applications
,”
Int. J. Heat Mass Transfer
,
76
, pp.
210
236
.
32.
Shao
,
B.
,
Wang
,
S.
,
Tian
,
R.
,
Qiao
,
Z.
,
Chen
,
Y.
, and
Sun
,
Q.
,
2019
, “
FSP-DDF Coupling Model of LBM for the Fluid Flow and Heat Transfer in Porous Media
,”
Appl. Therm. Eng.
,
157
, p.
113698
.
33.
Wang
,
Z.
,
Xin
,
L.
,
Xu
,
Z.
, and
Shen
,
L.
,
2017
, “
Lattice Boltzmann Simulation of Heat Transfer With Phase Change in Saturated Soil During Freezing Process
,”
Numer. Heat Transfer Part B: Fundam.
,
72
(
5
), pp.
361
376
.
34.
Kang
,
Q.
,
Zhang
,
D.
, and
Chen
,
S.
,
2004
, “
Immiscible Displacement in a Channel: Simulations of Fingering in Two Dimensions
,”
Adv. Water Resour.
,
27
(
1
), pp.
13
22
.
35.
Kruggel-Emden
,
H.
,
Kravets
,
B.
,
Suryanarayana
,
M. K.
, and
Jasevicius
,
R.
,
2016
, “
Direct Numerical Simulation of Coupled Fluid Flow and Heat Transfer for Single Particles and Particle Packings by a LBM-Approach
,”
Powder Technol.
,
294
, pp.
236
251
.
36.
Qi
,
N.
,
Wang
,
W.
,
Guo
,
W.
, and
Li
,
H.
,
2021
, “
Experimental Study on the Coupled Heat-Moisture-Heavy Metal Pollutant Transfer Process in Soils
,”
Adv. Civil Eng.
,
2021
, p.
5510217
.
37.
Bär
,
K.
,
Reinsch
,
T.
, and
Bott
,
J.
,
2020
, “
The PetroPhysical Property Database (P-3)—A Global Compilation of Lab-Measured Rock Properties
,”
Earth Syst. Sci. Data
,
12
(
4
), pp.
2485
2515
.
38.
Tatar
,
A.
,
Mohammadi
,
S.
,
Soleymanzadeh
,
A.
, and
Kord
,
S.
,
2021
, “
Predictive Mixing Law Models of Rock Thermal Conductivity: Applicability Analysis
,”
J. Pet. Sci. Eng.
,
197
, p.
107965
.
39.
Orazulike
,
D.
,
1992
, “
A Study of the Gully Phenomenon in Gombe Town, Bauchi State: Bedrock Geology and Environmental Implications
,”
Nat. Hazards
,
5
(
2
), pp.
199
203
.
40.
Kurniawan
,
D. H.
,
Winardi
,
S.
, and
Anggara
,
F.
,
2021
, “
Linking Between Sedimentary Facies and Petrophysical Rock Type: A Case Study
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
789
(
1
), p.
012077
.
You do not currently have access to this content.