Abstract

In this work, numerical simulations are carried out to delineate the natural convection and surface radiation heat transfer characteristics of vertically oriented isothermal helical coils having a constant surface area. Numerical computations using the finite-volume method are carried out in the laminar regime for the following non-dimensional parameter ranges: Rayleigh number (104 ≤ Ra ≤ 108), surface emissivity of the coil (0 ≤ ɛ ≤ 1), pitch to the rod-diameter of the coil (3 ≤ p/d ≤ 7.5), and coil-height to the rod-diameter (40 ≤ H/d ≤ 60). Temperature-dependent fluid properties have been implemented to obtain accurate results. The impact of Ra and ɛ on both convective and radiative heat losses is discussed in detail. At a high Ra of 108, when H/d varies from 40 to 60, the mass flowrate inducted through the coil reduces from 40.6% at p/d = 3 to 11.4% at p/d = 7.5. As a result, the relative strength of convection heat loss declines with a rise in H/d. For a higher emissivity of the coil surface of 0.9 and a lower Ra of 104, heat transfer by convection contributes only 12.66% of the total heat transfer. In contrast, the contribution of radiative heat transfer is only 7.46% for a lower emissivity of the coil surface of 0.1 and a higher Ra of 108.

References

1.
Naphon
,
P.
, and
Wongwises
,
S.
,
2006
, “
A Review of Flow and Heat Transfer Characteristics in Curved Tubes
,”
Renew. Sustain. Energy Rev.
,
10
(
5
), pp.
463
490
.
2.
Ali
,
M. E.
,
1994
, “
Experimental Investigation of Natural Convection From Vertical Helical Coiled Tubes
,”
Int. J. Heat Mass Transfer
,
37
(
4
), pp.
665
671
.
3.
Xin
,
R. C.
, and
Ebadian
,
M. A.
,
1996
, “
Natural Convection Heat Transfer From Helicoidal Pipes
,”
J. Thermophys. Heat Transfer
,
10
(
2
), pp.
297
302
.
4.
Ali
,
M. E.
,
1998
, “
Laminar Natural Convection From Constant Heat Flux Helical Coiled Tubes
,”
Int. J. Heat Mass Transfer
,
41
(
14
), pp.
2175
2182
.
5.
Dean
,
W. R.
,
1927
, “
XVI. Note on the Motion of Fluid in a Curved Pipe
,”
Lond. Edinburgh Philos. Mag. J. Sci.
,
4
(
20
), pp.
208
223
.
6.
Dean
,
W. R.
,
1928
, “
LXXII. The Stream-Line Motion of Fluid in a Curved Pipe (Second Paper)
,”
Lond. Edinburgh Philos. Mag. J. Sci.
,
5
(
30
), pp.
673
695
.
7.
Garimella
,
S.
,
Richards
,
D. E.
, and
Christensen
,
R. N.
,
1988
, “
Experimental Investigation of Heat Transfer in Coiled Annular Ducts
,”
ASME J. Heat Transfer-Trans. ASME
,
110
(
2
), pp.
329
336
.
8.
Seban
,
R. A.
, and
McLaughlin
,
E. F.
,
1963
, “
Heat Transfer in Tube Coils With Laminar and Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
6
(
5
), pp.
387
395
.
9.
Itō
,
H.
,
1969
, “
Laminar Flow in Curved Pipes
,”
J. Appl. Math. Mech.
,
49
(
11
), pp.
653
663
.
10.
Prabhanjan
,
D. G.
,
Rennie
,
T. J.
, and
Raghavan
,
G. S. V.
,
2004
, “
Natural Convection Heat Transfer From Helical Coiled Tubes
,”
Int. J. Therm. Sci.
,
43
(
4
), pp.
359
365
.
11.
Moawed
,
M.
,
2005
, “
Experimental Investigation of Natural Convection From Vertical and Horizontal Helicoidal Pipes in HVAC Applications
,”
Energy Convers. Manage.
,
46
(
18–19
), pp.
2996
3013
.
12.
Neshat
,
E.
, and
Hossainpour
,
S.
,
2017
, “
Numerical Investigation of Unsteady Natural Convection Heat Transfer From the Outer Surface of Helical Coils
,”
Proc. Inst. Mech. Eng. E: J. Process Mech. Eng.
,
231
(
3
), pp.
383
391
.
13.
Acharya
,
S.
, and
Dash
,
S. K.
,
2020
, “
Turbulent Natural Convection Heat Transfer From a Vertical Hollow Cylinder Suspended in Air: A Numerical Approach
,”
Thermal Sci. Eng. Prog.
,
15
, p.
100449
.
14.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2020
, “
Natural Convection Heat Transfer and Fluid Flow Around a Thick Hollow Vertical Cylinder Suspended in Air: A Numerical Approach
,”
Int. J. Therm. Sci.
,
152
, p.
106312
.
15.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2020
, “
3-D Numerical Investigation on Buoyancy-Induced Flow and Heat Transfer From a Hollow Horizontal Steel Cylinder With Finite Wall Thickness
,”
Numer. Heat Transf. A: Appl.
,
78
(
6
), pp.
252
275
.
16.
Yovanovich
,
M. M.
,
1987
, “
On the Effect of Shape, Aspect Ratio and Orientation Upon Natural Convection From Isothermal Bodies of Complex Shape
,”
ASME HTD
,
82
, pp.
121
129
.
17.
Lee
,
S.
,
Yovanovich
,
M. M.
, and
Jafarpur
,
K.
,
1991
, “
Effects of Geometry and Orientation on Laminar Natural Convection From Isothermal Bodies
,”
J. Thermophys. Heat Transfer
,
5
(
2
), pp.
208
216
.
18.
Howell
,
J. R.
,
Mengüç
,
M. P.
,
Daun
,
K.
, and
Siegel
,
R.
,
2020
,
Thermal Radiation Heat Transfer
, 7th ed.,
CRC Press
,
Boca Raton, FL
.
19.
Hossain
,
M. A.
, and
Alim
,
M. A.
,
1997
, “
Natural Convection-Radiation Interaction on Boundary Layer Flow Along a Thin Vertical Cylinder
,”
Heat Mass Transfer
,
32
(
6
), pp.
515
520
.
20.
Lu
,
X.
, and
Wang
,
T.
,
2013
, “
Investigation of Radiation Models in Entrained-Flow Coal Gasification Simulation
,”
Int. J. Heat Mass Transfer
,
67
, pp.
377
392
.
21.
Gholamalizadeh
,
E.
, and
Kim
,
M. H.
,
2014
, “
Three-Dimensional CFD Analysis for Simulating the Greenhouse Effect in Solar Chimney Power Plants Using a Two-Band Radiation Model
,”
Renew. Energy
,
63
, pp.
498
506
.
22.
Fluent ANSYS Inc.
,
2013
,
15.0 User Guide, November 2013
,
ANSYS Inc.
,
Canonsburg, PA
.
23.
Wu
,
T.
, and
Lei
,
C.
,
2015
, “
On Numerical Modelling of Conjugate Turbulent Natural Convection and Radiation in a Differentially Heated Cavity
,”
Int. J. Heat Mass Transfer
,
91
, pp.
454
466
.
24.
Rath
,
S.
, and
Dash
,
S. K.
,
2021
, “
Effect of Horizontal Spacing on Natural Convection to Power-Law Fluids From Two Horizontally Aligned Cylinders
,”
Heat Transfer Eng.
,
42
(
10
), pp.
854
874
.
25.
Rath
,
S.
, and
Dash
,
S. K.
,
2021
, “
Natural Convection in Power-Law Fluids From a Pair of Two Attached Horizontal Cylinders
,”
Heat Transfer Eng.
,
42
(
7
), pp.
627
653
.
26.
Mulamootil
,
J. K.
,
Rath
,
S.
, and
Dash
,
S. K.
,
2021
, “
Relative Importance of Temperature-Dependent Properties in Non-Newtonian Natural Convection Around Curved Surfaces
,”
Int. Commun. Heat Mass Transfer
,
124
, p.
105263
.
27.
Rath
,
S.
,
Siddhartha
, and
Dash
,
S. K.
,
2022
, “
Thermal Performance of a Radial Heat Sink With Longitudinal Wavy Fins for Electronic Cooling Applications Under Natural Convection
,”
J. Therm. Anal. Calorim.
,
147
, pp.
9119
9137
.
28.
Irvine
,
T. F.
, and
Liley
,
P. E.
,
1984
,
Steam and Gas Tables With Computer Equations
,
Academic Press
,
Orlando, FL
, pp.
97
111
.
29.
Dash
,
M. K.
, and
Dash
,
S. K.
,
2020
, “
Combined Effect of Turbulent Natural Convection and Radiation From a Horizontal Cylinder
,”
J. Thermophys. Heat Transfer
,
34
(
4
), pp.
759
768
.
30.
Rath
,
S.
, and
Dash
,
S. K.
,
2019
, “
Laminar and Turbulent Natural Convection From a Stack of Thin Hollow Horizontal Cylinders: A Numerical Study
,”
Numer. Heat Transfer A: Appl.
,
75
(
11
), pp.
753
775
.
31.
Rath
,
S.
, and
Dash
,
S. K.
,
2020
, “
Numerical Study of Laminar and Turbulent Natural Convection From a Stack of Solid Horizontal Cylinders
,”
Int. J. Therm. Sci.
,
148
, p.
106147
.
32.
Biradar
,
B. A.
,
Rath
,
S.
, and
Dash
,
S. K.
,
2021
, “
Orientation Effects on Conjugate Natural Convection Heat Transfer From an LED Bulb: A Numerical Study
,”
Int. J. Therm. Sci.
,
159
, p.
106640
.
33.
Siddhartha
,
Rath
,
S.
, and
Dash
,
S. K.
,
2021
, “
Thermal Performance of a Wavy Annular Finned Horizontal Cylinder in Natural Convection for Electronic Cooling Application
,”
Int. Commun. Heat Mass Transfer
,
128
, p.
105623
.
34.
Rath
,
S.
, and
Dash
,
S. K.
,
2019
, “
Effect of Horizontal Spacing and Tilt Angle on Thermo-Buoyant Natural Convection From Two Horizontally Aligned Square Cylinders
,”
Int. J. Therm. Sci.
,
146
, p.
106113
.
35.
Biswal
,
G.
, and
Mohanty
,
A.
,
2021
, “Numerical Analysis of Natural Convection in a Partially Open Square Cavity With Multiple Heat Sources,”
Lecture Notes in Mechanical Engineering
, M. Palanisamy, V. Ramalingam, and M. Sivalingam, eds.,
Springer
,
Singapore
, pp.
73
80
.
36.
Garnayak
,
S.
, and
Rath
,
S.
,
2021
, “
Numerical Computation on Natural Convection Heat Transfer From an Isothermal Sphere With Semicircular Ribs
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
9
), p.
092601
.
You do not currently have access to this content.