Abstract

In this study, the effect of heat sink geometries on the performance of a thermoelectric generator was researched. In this context, fins with different geometries (flat fin, square pin fin, hexagonal pin fin, and circle pin fin) placed on an aluminum heat sink, and their effects on heat transfer and electricity generation were investigated numerically. Calculations were carried out according to three different hot surface temperatures and five different air velocities. As a result of this study, it was determined that the electrical output increased with the increase in air velocity and hot surface temperature in all geometries. The highest electrical outputs were obtained at 150 °C hot surface temperatures and 15,000 Reynolds numbers, while the lowest electrical outputs were obtained at 50 °C hot surface temperatures and 5000 Reynolds numbers in all geometries. The best thermal and electrical performance was obtained with a flat fin heat sink, and the worst performance was seen in the thermoelectric generator (TEG) system without a heat sink. The highest power outputs of the flat fin heat sink and without heat sink TEG systems were 6.42 W and 1.12 W, respectively. In addition, the highest conversion efficiencies of the flat fin heat sink and without heat sink TEG systems were 14.94% and 5.54%, respectively.

References

1.
Karri
,
M. A.
,
Thacher
,
E. F.
, and
Helenbrook
,
B. T.
,
2011
, “
Exhaust Energy Conversion by Thermoelectric Generator: Two Case Studies
,”
Energy Convers. Manage.
,
52
(
3
), pp.
1596
1611
.
2.
Erturun
,
U.
,
Erermis
,
K.
, and
Mossi
,
K.
,
2014
, “
Effect of Various Leg Geometries on Thermo-Mechanical and Power Generation Performance of Thermoelectric Devices
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
128
141
.
3.
Li
,
G.
,
Wang
,
Z. C.
,
Wang
,
F.
,
Wang
,
X. Z.
,
Li
,
S. B.
, and
Xue
,
M. S.
,
2019
, “
Experimental and Numerical Study on the Effect of Interfacial Heat Transfer on Performance of Thermoelectric Generators
,”
Energies
,
12
(
19
), p.
3797
.
4.
Luo
,
D.
,
Wang
,
R. C.
, and
Yu
,
W.
,
2019
, “
Comparison and Parametric Study of Two Theoretical Modeling Approaches Based on an Air-to-Water Thermoelectric Generator System
,”
J. Power Sources
,
439
, p.
227069
5.
Qiu
,
K.
, and
Hayden
,
A. C. S.
,
2012
, “
Integrated Thermoelectric and Organic Rankine Cycles for Micro-CHP Systems
,”
Appl. Energy
,
97
, pp.
667
672
.
6.
Shen
,
R.
,
Gou
,
X. L.
,
Xu
,
H. Y.
, and
Qiu
,
K. R.
,
2017
, “
Dynamic Performance Analysis of a Cascaded Thermoelectric Generator
,”
Appl. Energy
,
203
, pp.
808
815
.
7.
Wang
,
S. X.
,
Xie
,
T. X.
, and
Xie
,
H. X.
,
2018
, “
Experimental Study of the Effects of the Thermal Contact Resistance on the Performance of Thermoelectric Generator
,”
Appl. Therm. Eng.
,
130
, pp.
847
853
.
8.
Zhang
,
Y. L.
,
Wang
,
X. W.
,
Cleary
,
M.
,
Schoensee
,
L.
,
Kempf
,
N.
, and
Richardson
,
J.
,
2016
, “
High-Performance Nanostructured Thermoelectric Generators for Micro Combined Heat and Power Systems
,”
Appl. Therm. Eng.
,
96
, pp.
83
87
.
9.
Khattak
,
Z.
, and
Ali
,
H. M.
,
2019
, “
Air Cooled Heat Sink Geometries Subjected to Forced Flow: A Critical Review
,”
Int. J. Heat Mass Transfer
,
130
, pp.
141
161
.
10.
Lv
,
S.
,
He
,
W.
,
Jiang
,
Q. Y.
,
Hu
,
Z. T.
,
Liu
,
X. H.
,
Chen
,
H. B.
, and
Liu
,
M. H.
,
2018
, “
Study of Different Heat Exchange Technologies Influence on the Performance of Thermoelectric Generators
,”
Energy Convers. Manage.
,
156
, pp.
167
177
.
11.
Zhang
,
J. R.
,
Zhang
,
T. T.
,
Prakash
,
S.
, and
Jaluria
,
Y.
,
2014
, “
Experimental and Numerical Study of Transient Electronic Chip Cooling by Liquid Flow in Microchannel Heat Sinks
,”
Numer. Heat Transf. A: Appl.
,
65
(
7
), pp.
627
643
.
12.
Zhou
,
F.
, and
Catton
,
I.
,
2011
, “
Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks With Various Pin Cross-Sections
,”
Numer. Heat Transf. A: Appl.
,
60
(
2
), pp.
107
128
.
13.
Nishino
,
K.
,
Keiichi Kasuya
,
M. S.
, and
Torii
,
K.
,
1996
, “
Turbulence Characteristics in the Stagnation Region of an Axisymmetric Impinging Jet Flow
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
193
201
.
14.
Zhao
,
Z.
, and
Avedisian
,
C. T.
,
1997
, “
Enhancing Forced Air Convection Heat Transfer From an Array of Parallel Plate Fins Using a Heat Pipe
,”
Int. J. Heat Mass Transfer
,
40
(
13
), pp.
3135
3147
.
15.
Wang
,
Y.
, and
Vafai
,
K.
,
2000
, “
An Experimental Investigation of the Thermal Performance of an Asymmetrical Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
43
(
15
), pp.
2657
2668
.
16.
Wei
,
X. J.
, and
Joshi
,
Y.
,
2003
, “
Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
26
(
1
), pp.
55
61
.
17.
Jajja
,
S. A.
,
Ali
,
W.
,
Ali
,
H. M.
, and
Ali
,
A. M.
,
2014
, “
Water Cooled Minichannel Heat Sinks for Microprocessor Cooling: Effect of Fin Spacing
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
76
82
.
18.
Tiselj
,
I.
,
Hetsroni
,
G.
,
Mavko
,
B.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2004
, “
Effect of Axial Conduction on the Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
47
(
12
13
), pp.
2551
2565
.
19.
Lu
,
X.
,
Yu
,
X. F.
,
Wang
,
Q. W.
,
Chen
,
Y. T.
, and
Ma
,
T.
,
2019
, “
Numerical Study on Nonuniform Segmented Enhancement Method for Thermoelectric Power Generator
,”
Numer. Heat Transf. A: Appl.
,
76
(
8
), pp.
605
627
.
20.
Mostafavi
,
S. A.
, and
Mahmoudi
,
M.
,
2018
, “
Modeling and Fabricating a Prototype of a Thermoelectric Generator System of Heat Energy Recovery From Hot Exhaust Gases and Evaluating the Effects of Important System Parameters
,”
Appl. Therm. Eng.
,
132
, pp.
624
636
.
21.
Li
,
W. K.
,
Peng
,
J. Y.
,
Xiao
,
W. L.
,
Wang
,
H. H.
,
Zeng
,
J. S.
,
Xie
,
J.
,
Huang
,
Q. B.
,
Mao
,
K. M.
, and
Zhang
,
L.
,
2017
, “
The Temperature Distribution and Electrical Performance of Fluid Heat Exchanger-Based Thermoelectric Generator
,”
Appl. Therm. Eng.
,
118
, pp.
742
747
.
22.
Seo
,
Y. M.
,
Ha
,
M. Y.
,
Park
,
S. H.
,
Lee
,
G. H.
,
Kim
,
Y. S.
, and
Park
,
Y. G.
,
2018
, “
A Numerical Study on the Performance of the Thermoelectric Module With Different Heat Sink Shapes
,”
Appl. Therm. Eng.
,
128
, pp.
1082
1094
.
23.
Soleimani
,
Z.
,
Zoras
,
S.
,
Cui
,
Y.
,
Ceranic
,
B.
, and
Shahzad
,
S.
,
2019
, “
Design of Heat Sinks for Wearable Thermoelectric Generators to Power Personal Heating Garments: A Numerical Study
,”
IOP Conference Series: Earth and Environmental Science
,
Thessaloniki, Greece
,
Oct. 23–25
, pp.
1
8
.
24.
Lertsatitthanakorn
,
C.
,
2007
, “
Electrical Performance Analysis and Economic Evaluation of Combined Biomass Cook Stove Thermoelectric (BITE) Generator
,”
Bioresour. Technol.
,
98
(
8
), pp.
1670
1674
.
25.
Champier
,
D.
,
Bedecarrats
,
J. P.
,
Rivaletto
,
M.
, and
Strub
,
F.
,
2010
, “
Thermoelectric Power Generation From Biomass Cook Stoves
,”
Energy
,
35
(
2
), pp.
935
942
.
26.
Raman
,
P.
,
Ram
,
N. K.
, and
Gupta
,
R.
,
2014
, “
Development, Design and Performance Analysis of a Forced Draft Clean Combustion Cookstove Powered by a Thermo Electric Generator With Multi-Utility Options
,”
Energy
,
69
, pp.
813
825
.
27.
Date
,
A.
,
Date
,
A.
,
Dixon
,
C.
, and
Akbarzadeh
,
A.
,
2014
, “
Theoretical and Experimental Study on Heat Pipe Cooled Thermoelectric Generators With Water Heating Using Concentrated Solar Thermal Energy
,”
Sol. Energy
,
105
, pp.
656
668
.
28.
O'Shaughnessy
,
S. M.
,
Deasy
,
M. J.
,
Kinsella
,
C. E.
,
Doyle
,
J. V.
, and
Robinson
,
A. J.
,
2013
, “
Small Scale Electricity Generation From a Portable Biomass Cookstove: Prototype Design and Preliminary Results
,”
Appl. Energy
,
102
, pp.
374
385
.
29.
Ansys User Guide
,
2017
, Fluent,Ver. 18, Ansys Fluent Tutorial Guide,
Ansys Inc.
,
Canonsburg, PA
.
30.
Ozbektas
,
S.
,
Sungur
,
B.
, and
Topaloglu
,
B.
,
2021
, “
Performance Analysis of Thermoelectric Generator at Different Hot Surface Temperatures
,”
J. Thermophys. Heat Transfer
,
35
(
4
), pp.
1
10
.
You do not currently have access to this content.