Abstract

Based on abundant hydrothermal geothermal resources at the depth of 1000–2000 m formation in the basin of the BoHai Bay, the deep borehole heat exchanger (DBHE) combined with the geothermal wells is proposed. According to the modified thermal resistance and capacity model (MTRCM), the heat transfer models inside and outside borehole are established. The transient analytical solutions which are the vertical temperature profiles in the inlet (outlet) pipe and the grout of the DBHE and the corresponding dimensionless form are obtained by deducing and solving the heat transfer models inside the borehole. The mathematical model and the analytical solutions are validated by the experimental data and existing studied data. This paper utilizes respectively the Matlab2012 and the Feflow7.1 to solve the heat transfer models inside and outside the DBHE. The sensitivity analysis is performed to examine the influence of typical parameters on the DBHE heat transfer characteristics, including the quantity of geothermal water exploitation, the well distance between the pumping well and the DBHE, the DBHE inlet temperature, the DBHE depth, and the flowrate of circulating water. Under the action of geothermal wells, the heat transfer mechanism is changed in the thermal reservoir, and the DBHE heat transfer capacity can effectively enhance while the quantity of geothermal water exploitation increases and the well distance decreases. However, with the change of the quantity of geothermal water exploitation, the growth rate of the DBHE heat transfer capacity reduces and the sensitivity of the change of the typical parameters on the DBHE heat transfer performance reduces.

References

1.
Zhu
,
N.
,
Hu
,
P. F.
,
Xu
,
L. H.
,
Jiang
,
Z. G.
, and
Lei
,
F.
,
2014
, “
Recent Research and Applications of Ground Source Heat Pump Integrated With Thermal Energy Storage Systems: A Review
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
142
151
.
2.
Survey
,
M. o. N. R. C. G.
,
2018
,
China Geothermal Energy Development Report
,
Petrochemical Press
,
Beijing, China
,
5
10
.
3.
National Development and Reform Commission
,
2017
,
The 13th Five-Year Plan for the Exploitation and Utilization of Geothermal Energy
,
NDRC
,
Beijing, China
.
4.
Li
,
W.
,
Kong
,
X. J.
,
Yuan
,
L. J.
,
Gao
,
J.
,
Shen
,
P. F.
,
Feng
,
H.
,
Hao
,
W. J.
, and
He
,
Y. C.
,
2020
, “
General Situation and Suggestions of Development and Utilization of Geothermal Resources in China
,”
China Mining Mag.
,
29
(
z1
), pp.
22
26
.
5.
Pang
,
Z. H.
,
Luo
,
J.
,
Cheng
,
Y. Z.
,
Duan
,
Z. F.
,
Tian
,
J.
,
Kong
,
Y. L.
,
Li
,
Y. M.
,
Hu
,
S. B.
, and
Wang
,
J. Y.
,
2020
, “
Evaluation of Geological Conditions for the Development of Deep Geothermal Energy in China
,”
Earth Sci. Front.
,
27
(
1
), pp.
134
151
.
6.
Wang
,
G. L.
,
Zhang
,
W.
,
Lin
,
W. J.
,
Liu
,
F.
,
Zhu
,
X.
,
Liu
,
Y. G.
, and
Li
,
J.
,
2017
, “
Research on Formation Mode and Development Potential of Geothermal Resources in Beijing-Tianjin-Hebei Region
,”
Geol. China
,
44
(
6
), pp.
1074
1085
.
7.
Wang
,
Z. H.
,
Wang
,
F. H.
,
Ma
,
Z. J.
,
Wang
,
X. K.
, and
Wu
,
X. Z.
,
2016
, “
Research of Heat and Moisture Transfer Influence on the Characteristics of the Ground Heat Pump Exchangers in Unsaturated Soil
,”
Energy Build.
,
130
, pp.
140
149
.
8.
Nian
,
Y. L.
,
Cheng
,
W. L.
,
Yang
,
X. Y.
, and
Xie
,
K.
,
2019
, “
Simulation of a Novel Deep Ground Source Heat Pump System Using Abandoned Oil Wells With Coaxial BHE
,”
Int. J. Heat Mass Transfer
,
137
, pp.
400
412
.
9.
Song
,
X. Z.
,
Wang
,
G. S.
,
Shi
,
Y.
,
Li
,
R. X.
,
Xu
,
Z. M.
,
Zheng
,
R.
,
Wang
,
Y.
, and
Li
,
J. C.
,
2018
, “
Numerical Analysis of Heat Extraction Performance of a Deep Coaxial Borehole Heat Exchanger Geothermal System
,”
Energy
,
164
, pp.
1298
1310
.
10.
Luo
,
Y. Q.
,
Guo
,
H. S.
,
Meggers
,
F.
, and
Zhang
,
L.
,
2019
, “
Deep Coaxial Borehole Heat Exchanger: Analytical Modeling and Thermal Analysis
,”
Energy
,
185
, pp.
1298
1313
.
11.
Bu
,
X. B.
,
Ran
,
Y. M.
, and
Zhang
,
D. D.
,
2019
, “
Experimental and Simulation Studies of Geothermal Single Well for Building Heating
,”
Renewable Energy
,
143
, pp.
1902
1909
.
12.
Kohl
,
T.
,
Evansi
,
K.F.
,
Hopkirk
,
R.J.
, and
Rybach
,
L.
,
1995
, “
Coupled Hydraulic, Thermal and Mechanical Considerations for the Simulation of Hot Dry Rock Reservoirs
,”
Geothermics
,
24
(
3
), pp.
345
359
.
13.
Beier
,
R. A.
,
Acuña
,
J.
,
Mogensen
,
P.
, and
Palm
,
B.
,
2014
, “
Transient Heat Transfer in a Coaxial Borehole Heat Exchanger
,”
Geothermics
,
51
, pp.
470
482
.
14.
Gordon
,
D.
,
Bolisetti
,
T.
,
Ting
,
S. K.
, and
Reitsma
,
S.
,
2017
, “
Short-Term Fluid Temperature Variations in Either a Coaxial or U-Tube Borehole Heat Exchanger
,”
Geothermics
,
67
, pp.
29
39
.
15.
Gordon
,
D.
,
Bolisetti
,
T.
,
Ting
,
S. K.
, and
Reitsma
,
S.
,
2017
, “
A Physical and Semi-analytical Comparison Between Coaxial BHE Designs Considering Various Piping Materials
,”
Energy
,
141
, pp.
1610
1621
.
16.
Chen
,
C. F.
,
Shao
,
H. B.
,
Naumov
,
D.
,
Kong
,
Y. L.
,
Tu
,
K.
, and
Kolditz
,
O.
,
2019
, “
Numerical Investigation on the Performance, Sustainability, and Efficiency of the Deep Borehole Heat Exchanger System for Building Heating
,”
Geotherm Energy
,
7
(
1
), pp.
1
26
.
17.
Fang
,
L.
,
Diao
,
N. R.
,
Shao
,
Z. K.
,
Zhu
,
K.
, and
Fang
,
Z. H.
,
2018
, “
A Computationally Efficient Numerical Model for Heat Transfer Simulation of Deep Borehole Heat Exchangers
,”
Energy Build.
,
167
, pp.
79
88
.
18.
Fang
,
L.
,
Diao
,
N. R.
,
Shao
,
Z. K.
,
Wang
,
Z. T.
, and
Fang
,
Z. F.
,
2017
, “
Study on Thermal Resistance of Coaxial Tube Boreholes in Ground-Coupled Heat Pump Systems
,”
Procedia Eng.
,
205
, pp.
3735
3742
.
19.
Bauer
,
D.
,
Heidemann
,
W.
, and
Diersch
,
H. J. G.
,
2011
, “
Transient 3D Analysis of Borehole Heat Exchanger Modeling
,”
Geothermics
,
40
(
4
), pp.
250
260
.
20.
He
,
M.
,
Rees
,
S.
, and
Shao
,
L.
,
2011
, “
Simulation of a Domestic Ground Source Heat Pump System Using a Three-Dimensional Numerical Borehole Heat Exchanger Model
,”
J. Build. Perform. Simul.
,
4
(
2
), pp.
141
155
.
21.
Molina-Giraldo
,
N.
,
Blum
,
P.
,
Zhu
,
K.
,
Bayer
,
P.
, and
Fang
,
Z. H.
,
2011
, “
A Moving Finite Line Source Model to Simulate Borehole Heat Exchangers With Groundwater Advection
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2506
2513
.
22.
Noorollahi
,
Y.
,
Pourarshad
,
M.
,
Jalilinasrabady
,
S.
, and
Yousefi
,
H.
,
2015
, “
Numerical Simulation of Power Production From Abandoned oil Wells in Ahwaz oil Field in Southern Iran
,”
Geothermics
,
55
, pp.
16
23
.
23.
Davis
,
A. P.
, and
Michaelides
,
E. E.
,
2009
, “
Geothermal Power Production From Abandoned Oil Wells
,”
Energy
,
34
(
7
), pp.
866
872
.
24.
Cai
,
W. L.
,
Wang
,
F. H.
,
Liu
,
J.
,
Wang
,
Z. H.
, and
Ma
,
Z. J.
,
2018
, “
Experimental and Numerical Investigation of Heat Transfer Performance and Sustainability of Deep Borehole Heat Exchangers Coupled With Ground Source Heat Pump Systems
,”
Appl. Therm. Eng.
,
149
, pp.
975
986
.
25.
Liu
,
J.
,
Wang
,
F. H.
,
Cai
,
W. L.
,
Wang
,
Z. H.
,
Wei
,
Q. P.
, and
Deng
,
J. W.
,
2019
, “Numerical Study on the Effects of Design Parameters on the Heat Transfer Performance of Coaxial Deep Borehole Heat Exchanger,” Energy Weekly News.
26.
Wang
,
Z. H.
,
Wang
,
F. H.
,
Liu
,
J.
,
Ma
,
Z. J.
,
Han
,
E. H.
, and
Song
,
M. J.
,
2017
, “
Field Test and Numerical Investigation on the Heat Transfer Characteristics and Optimal Design of the Heat Exchangers of a Deep Borehole Ground Source Heat Pump System
,”
Energy Convers. Manage.
,
153
, pp.
603
615
.
27.
Bu
,
X. B.
,
Jiang
,
K. Q.
, and
Li
,
H. S.
,
2019
, “
Performance of Geothermal Single Well for Intermittent Heating
,”
Energy
,
186
(
C
), p.
115858
.
28.
Sapinska-Sliwa
,
A.
,
Rosen
,
M. A.
,
Gonet
,
A.
, and
Sliwa
,
T.
,
2016
, “
Deep Borehole Heat Exchangers—A Conceptual and Comparative Review
,”
Int. J. Air-Cond. Refrig.
,
24
(
01
), pp.
1
15
.
29.
Dijkshoorn
,
L.
,
Speer
,
S.
,
Pechnig
,
R.
, and
Burg
,
J.
,
2013
, “
Measurements and Design Calculations for a Deep Coaxial Borehole Heat Exchanger in Aachen, Germany
,”
Int. J. Geophys.
,
2013
, pp.
1
14
.
30.
Kohl
,
T.
,
Brenni
,
R.
, and
Eugster
,
W.
,
2002
, “
System Performance of a Deep Borehole Heat Exchanger
,”
Geothermics
,
31
(
6
), pp.
687
708
.
31.
Śliwa
,
T.
, and
Kotyza
,
J.
,
2003
, “
Application of Existing Wells as Ground Heat Source for Heat Pumps in Poland
,”
Appl. Energy
,
74
(
1–2
), pp.
3
8
.
32.
Huchtemann
,
K.
, and
Müller
,
D.
,
2014
, “
Combined Simulation of a Deep Ground Source Heat Exchanger and an Office Building
,”
Build. Environ.
,
73
, pp.
97
105
.
33.
Lous
,
M. L.
,
Larroque
,
F.
,
Dupuy
,
A.
, and
Moignard
,
A.
,
2015
, “
Thermal Performance of a Deep Borehole Heat Exchanger: Insights From a Synthetic Coupled Heat and Flow Model
,”
Geothermics
,
57
, pp.
157
172
.
34.
Welsch
,
B.
,
Rühaak
,
W.
,
Schulte
,
D. O.
,
Bär
,
K.
, and
Sass
,
I.
,
2016
, “
Characteristics of Medium Deep Borehole Thermal Energy Storage
,”
Energy Weekly News
,
40
(
13
), pp.
1855
1868
.
35.
Nam
,
Y. J.
,
Ooka
,
R.
, and
Hwang
,
S.
,
2008
, “
Development of a Numerical Model to Predict Heat Exchange Rates for a Ground-Source Heat Pump System
,”
Energy Build
,
40
(
12
), pp.
2133
2140
.
36.
Hein
,
P.
,
Kolditz
,
O.
,
Görke
,
U.
,
Bucher
,
A.
, and
Shao
,
H. B.
,
2016
, “
A Numerical Study on the Sustainability and Efficiency of Borehole Heat Exchanger Coupled Ground Source Heat Pump Systems
,”
Appl. Therm. Eng.
,
100
, pp.
421
433
.
37.
Cui
,
Y. L.
,
Zhu
,
J.
,
Twaha
,
S.
, and
Riffat
,
S.
,
2018
, “
A Comprehensive Review on 2D and 3D Models of Vertical Ground Heat Exchangers
,”
Renewable Sustainable Energy Rev.
,
94
, pp.
84
114
.
38.
Eskilson
,
P.
, and
Claesson
,
J.
,
1988
, “
Simulation Model for Thermally Interacting Heat Extraction Boreholes
,”
Numerical Heat Transfer, Part B: Fundamentals
,
13
(
2
), pp.
149
165
.
39.
Chen
,
X. X.
,
2013
,
Study on the Particle Transport and Deposition in Saturated Porous Media
,
Jiaotong University
,
Beijing, China
.
You do not currently have access to this content.