Abstract

In typical film cooling experiments, the adiabatic wall temperature may be determined from surface temperature measurements on a low thermal conductivity model in a low-temperature wind tunnel. In such experiments, it is generally accepted that the adiabatic wall temperature must be bounded between the coolant temperature and the freestream recovery temperature as they represent the lowest and highest temperature introduced into the experiment. Many studies have utilized foreign gas coolants to alter the coolant properties such as density and specific heat to more appropriately simulate engine representative flows. In this paper, we show that the often ignored Dufour effect can alter the thermal physics in such an experiment from those relevant to the engine environment that we generally wish to simulate. The Dufour effect is an off-diagonal coupling of heat and mass transfer that can induce temperature gradients even in what would otherwise be isothermal experiments. These temperature gradients can result in significant errors in the calibration of various experimental techniques, as well as lead to results that at first glance may appear non-physical such as adiabatic effectiveness values not bounded by zero and one. This work explores Dufour effect induced temperature separation on two common cooling flow schemes, a leading edge with compound injection through a cylindrical cooling hole, and a flat plate with axial injection through a 7–7–7-shaped cooling hole. Air, argon, carbon dioxide, helium, and nitrogen coolant were utilized due to their usage in recent film cooling studies.

References

1.
Narzary
,
D. P.
,
Liu
,
K. C.
,
Rallabandi
,
A. P.
, and
Han
,
J. C.
,
2012
, “
Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique
,”
ASME J. Turbomach.
,
134
(
3
), p.
031006
.
2.
Li
,
S. J.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(
5
), p.
051011
.
3.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
143
(
3
), pp.
437
443
.
4.
Thole
,
K. A.
,
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1992
, “
Mean Temperature Measurements of Jets With a Crossflow for Gas Turbine Film Cooling Application
,”
Proceedings of the Third International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-3
,
Honolulu, HI
,
Apr. 1–4, 1990
, pp.
69
85
.
5.
Wiese
,
C. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2018
, “
Experimental Evaluation of Thermal and Mass Transfer Techniques to Measure Adiabatic Effectiveness With Various Coolant to Freestream Property Ratios
,”
ASME J. Turbomach.
,
140
(
2
), p.
021001
.
6.
Fischer
,
J. P.
,
McNamara
,
L. J.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2020
, “
Scaling Flat Plate, Low-Temperature Adiabatic Effectiveness Results Using the Advective Capacity Ratio
,”
ASME J. Turbomach.
,
142
(
8
), p.
081010
.
7.
McNamara
,
L. J.
,
Fischer
,
J. P.
,
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2021
, “
Scaling Considerations for Thermal and Pressure-Sensitive Paint Methods Used to Determine Adiabatic Effectiveness
,”
ASME J. Turbomach.
,
143
(
1
), p.
011004
.
8.
Wiese
,
C. J.
, and
Rutledge
,
J. L.
,
2021
, “
The Effects of Specific Heat and Viscosity on Film Cooling Behavior
,”
ASME J. Turbomach.
,
143
(
4
), p.
041008
.
9.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1959
,
Fluid Mechanics
,
Addison-Wesley Publishing Company, Inc.
,
Reading, MA
.
10.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
, 2nd ed. (revised),
John Wiley & Sons, Inc
,
New York
.
11.
Hort
,
W.
,
Linz
,
S. J.
, and
Lücke
,
M.
,
1992
, “
Onset of Convection in Binary Gas Mixtures: Role of the Dufour Effect
,”
Phys. Rev. A
,
45
(
6
), pp.
3737
3748
.
12.
Hirschfelder
,
J. O.
,
Curtiss
,
C. F.
, and
Bird
,
R. B.
,
1954
,
Molecular Theory of Gases and Liquids
,
John Wiley & Sons, Inc
,
New York
.
13.
Grew
,
K. E.
, and
Ibbs
,
T. L.
,
1952
,
Thermal Diffusion in Gases
,
Cambridge University Press
,
Cambridge
.
14.
Wiese
,
C. J.
,
2016
, “
Influence of Coolant Flow Rate Parameters in Scaling Gas Turbine Cooling Effectiveness
,”
M.S. thesis
,
Department of Aeronautics and Astronautics, Air Force Institute of Technology
,
Wright-Patterson AFB, OH
.
15.
Fischer
,
J. P.
,
2018
, “
Influence of Coolant Flow Rate Parameters in Scaling Gas Turbine Cooling Effectiveness on a Flat Plate
,”
M.S. thesis
,
Department of Aeronautics and Astronautics, Air Force Institute of Technology
,
Wright-Patterson AFB, OH
.
16.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo 2014
, Paper No. GT2014-25992.
17.
Rutledge
,
J. L.
,
King
,
P. I.
, and
Rivir
,
R.
,
2012
, “
Influence of Film Cooling Unsteadiness on Turbine Blade Leading Edge Heat Flux
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
071901
.
18.
Touloukian
,
Y. S.
,
Saxena
,
S. C.
, and
Hestermans
,
P.
,
1970
,
Thermophysical Properties of Matter, 11. Viscosity. Nonmetallic Gases and Liquids
,
IFI/Plenum
,
New York
.
19.
Touloukian
,
Y. S.
, and
Makita
,
T.
,
1970
,
Thermophysical Properties of Matter, 6. Specific Heat. Nonmetallic Gases and Liquids
,
IFI/Plenum
,
New York
.
20.
Touloukian
,
Y. S.
,
Liley
,
P. E.
, and
Saxena
,
S. C.
,
1970
,
Thermophysical Properties of Matter, 3. Thermal Conductivity. Nonmetallic Gases and Liquids
,
IFI/Plenum
,
New York
.
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.