Abstract

Radiant floor panel technology is gaining popularity as an alternative system over the conventional heating, ventilation, and air conditioning system to maintain the room temperature for the desired comfort. This research paper aims to optimize the hydrothermal performance of a radiant system by implementing the Taguchi technique and utility concept for cooling and heating mode of operation. Five geometrical and thermal parameters such as pipe diameter, pipe spacing, concrete layer thickness, wall temperature, and inlet and outlet water temperature difference with three levels are chosen as controlling factors to perform optimization. Considering five parameters and three levels, a total of 27 trial runs (L27) are constructed and computed by mathematical calculation. Two different sets of optimum parameters are obtained for maximizing heat flux and minimizing pressure drop. Furthermore, the utility concept is employed to get a single set of parameters to achieve maximum utilization of the radiant system. Taguchi analysis revealed that thermal parameters like temperature difference and wall temperature are the most influential parameters to reach maximum heat transfer and minimum pressure drop followed by geometrical parameters like pipe spacing and diameter for heat flux and pressure drop, respectively. Providing more weightage to heat flux than pressure drop, utility analysis showed 32% and 42% augmentation in heat flux for cooling and heating mode, respectively, at the cost of an increase in pressure drop.

References

1.
International Energy Agency
,
2008
, “
Promoting Energy Efficiency Investments—Case Studies in Residential Sector
,” https://ethz.ch/content/dam/ethz/special-interest/mtec/cepe/cepe-dam/documents/publications/books/promoting-ee-2008.pdf
2.
Price
,
L.
,
De la
,
S.
,
Du Can
,
R.
,
Sinton
,
S.
, and
Worrell
,
E.
,
2006
, “
Sector Trends in Global Energy Use GHG Emission
,” pp.
56
114
, https://www.scopus.com/record/display.uri?eid=2-s2.0-85076577409&origin=inward&txGid=a521b0702dccb7f57c8b6db65968e09b
3.
Janghyun
,
K.
,
Athanasios
,
T.
, and
James
,
E. B.
,
2014
, “
Review of Modelling Approaches For Passive Ceiling Cooling Systems
,”
J. Build. Perform. Simul.
,
8
(
3
), pp.
1
28
.
4.
Su
,
X.
,
Zhang
,
L.
,
Liu
,
Z.
,
Luo
,
Y.
,
Lian
,
J.
, and
Luo
,
Y.
,
2019
, “
A Computational Model of an Improved Cooling Radiant Ceiling Panel System for Optimization and Design
,”
Build. Environ.
,
163
, p.
106312
.
5.
Jin
,
X.
,
Zhang
,
X.
,
Luo
,
Y.
, and
Cao
,
R.
,
2010
, “
Numerical Simulation of Radiant Floor Cooling System: The Effects of Thermal Resistance of Pipe and Water Velocity on the Performance
,”
Build. Environ.
,
45
(
11
), pp.
2545
2552
.
6.
Sattari
,
S.
, and
Farhanieh
,
B.
,
2006
, “
A Parametric Study on Radiant Floor Heating System Performance
,”
Renew. Energy
,
31
(
10
), pp.
1671
1626
.
7.
Yu
,
G.
,
Xiong
,
L.
,
Du
,
C.
, and
Chen
,
H.
,
2018
, “
Simplified Model and Performance Analysis for Top Insulated Metal Ceiling Radiant Cooling Panels lWith Serpentine Tube Arrangement
,”
Case Stud. Therm. Eng.
,
11
, pp.
35
42
.
8.
Su
,
L.
,
Li
,
N.
,
Zhang
,
X.
,
Sun
,
Y.
, and
Qian
,
J.
,
2015
, “
Heat Transfer and Cooling Characteristics of Concrete Ceiling Radiant Cooling Panel
,”
Appl. Therm. Eng.
,
84
, pp.
170
179
.
9.
Okamoto
,
S.
,
Kitora
,
H.
,
Yamaguchi
,
H.
, and
Oka
,
T.
,
2010
, “
A Simplified Calculation Method for Estimating Heat Flux From Ceiling Radiant Panels
,”
Energy Build.
,
42
(
1
), pp.
29
33
.
10.
Wang
,
D.
,
Liu
,
Y.
,
Wang
,
Y.
, and
Liu
,
J.
,
2014
, “
Numerical and Experimental Analysis of Floor Heat Storage and Release During an Intermittent In-Slab Floor Heating Process
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
398
406
.
11.
Hu
,
S. T.
,
Yu
,
H. L.
, and
Li
,
X. Q.
,
1999
, “
Dynamic Simulation of Operation of the Radiant Floor Heating System
,”
HVAC
,
29
, pp.
15
17
.
12.
Feng
,
X. M.
, and
Xiao
,
Q. Y.
,
2004
, “
Dynamic Simulation of the Low Temperature Radiant Floor Heating System
,”
Build. Environ.
,
34
, pp.
1
4
.
13.
Li
,
R.
,
Yoshidomi
,
T.
,
Ooka
,
R.
, and
Olesen
,
B. W.
,
2015
, “
Field Evaluation of Performance of Radiant Heating/Cooling Ceiling Panel System
,”
Energy Build.
,
86
, pp.
58
65
.
14.
Shin
,
M. S.
,
Rhee
,
K. N.
,
Ryu
,
S. R.
,
Yeo
,
M. S.
, and
Kim
,
K. W.
,
2015
, “
Design of Radiant Floor Heating Panel in View of Floor Surface Temperatures
,”
Build. Environ.
,
92
, pp.
559
577
.
15.
Oubenmoh
,
S.
,
Allouhi
,
A.
,
Mssad
,
A. A.
,
Saadani
,
R.
,
Kousksou
,
T.
,
Rahmoune
,
M.
, and
Bentaleb
,
M.
,
2018
, “
Some Particular Design Considerations for Optimum Utilization of Under Floor Heating Systems
,”
Case Stud. Therm. Eng.
,
12
, pp.
423
432
.
16.
Karakoyuna
,
Y.
,
Ozgen
,
A.
,
Zehra
,
Y.
, and
Ahmet
,
S. D.
,
2020
, “
An Experimental Investigation on Heat Transfer Characteristics Arising Over an Underfloor Cooling System Exposed to Different Radiant Heating Loads Through Walls
,”
Appl. Therm. Eng.
,
164
, p.
114517
.
17.
Zhang
,
L.
,
Liu
,
X. H.
, and
Jiang
,
Y.
,
2012
, “
Simplified Calculation for Cooling/Heating Capacity, Surface Temperature Distribution of Radiant Floor
,”
Energy Build.
,
55
, pp.
397
404
.
18.
Li
,
Q.
,
Zhang
,
Y.
,
Guo
,
T.
, and
Fan
,
J.
,
2021
, “
Development of a New Method to Estimate Thermal Performance of Multilayer Radiant Floor
,”
J. Build. Eng.
,
33
, p.
101562
.
19.
Wang
,
X.
,
Zhang
,
W.
,
Li
,
Q.
,
Wei
,
Z.
,
Lei
,
W.
, and
Zhang
,
L.
,
2021
, “
An Analytical Method to Estimate Temperature Distribution of Typical Radiant Floor Cooling Systems With Internal Heat Radiation
,”
Energy Explor. Exploit.
,
39
(
4
), pp.
1
23
.
20.
Pandey
,
N.
,
Murugesan
,
K.
, and
Thomas
,
H. R.
,
2017
, “
Optimization of Ground Heat Exchangers for Space Heating and Cooling Applications Using Taguchi Method and Utility Concept
,”
Appl. Energy
,
190
, pp.
421
438
.
21.
Jeyapaul
,
R.
,
Shahabudeen
,
P.
, and
Krishnaiah
,
K.
,
2005
, “
Quality Management Research by Considering Multi-Response Problems in the Taguchi Method—A Review
,”
Int. J. Adv. Manuf. Technol.
,
26
(
11–12
), pp.
1331
1337
.
22.
Verma
,
V.
, and
Murugesan
,
K.
,
2014
, “
Optimization of Solar Assisted Ground Source Heat Pump System for Space Heating Application by Taguchi Method and Utility Concept
,”
Energy Build.
,
82
, pp.
296
309
.
23.
Nath
,
R.
, and
Krishnan
,
M.
,
2019
, “
Optimization of Double Diffusive Mixed Convection in a BFS Channel Filled With Alumina Nanoparticle Using Taguchi Method and Utility Concept
,”
Sci. Rep.
,
9
(
1
), p.
19536
.
You do not currently have access to this content.