Abstract

The power of electric vehicles (EVs) comes from lithium-ion batteries (LIBs). LIBs are sensitive to temperature. Too high and too low temperatures will affect the performance and safety of EVs. Therefore, a stable and efficient battery thermal management system (BTMS) is essential for an EV. This article has conducted a comprehensive study on liquid-cooled BTMS. Two cooling schemes are designed: the serpentine channel and the U-shaped channel. The results show that the cooling effect of two schemes is roughly the same, but the U-shaped channel can significantly decrease the pressure drop (PD) loss. The U-shaped channel is parameterized and modeled. A machine learning method called the Gaussian process (GP) model has been used to express the outputs such as temperature difference, temperature standard deviation, and pressure drop. A multi-objective optimization model is established using GP models, and the NSGA-II method is employed to drive the optimization process. The optimized scheme is compared with the initial design. The main findings are summarized as follows: the velocity of cooling water v decreases from 0.3 m/s to 0.22 m/s by 26.67%. Pressure drop decreases from 431.40 Pa to 327.11 Pa by 24.18%. The optimized solution has a significant reduction in pressure drop and helps to reduce parasitic power. The proposed method can provide a useful guideline for the liquid cooling design of large-scale battery packs.

References

1.
Greco
,
A.
,
Jiang
,
X.
, and
Cao
,
D. P.
,
2015
, “
An Investigation of Lithium-Ion Battery Thermal Management Using Paraffin/Porous-Graphite-Matrix Composite
,”
J. Power Sources
,
278
, pp.
50
68
. 10.1016/j.jpowsour.2014.12.027
2.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
. 10.1016/j.jpowsour.2011.02.076
3.
Skerlos
,
S. J.
, and
Winebrake
,
J. J.
,
2010
, “
Targeting Plug-in Hybrid Electric Vehicle Policies to Increase Social Benefits
,”
Energy Policy
,
38
(
2
), pp.
705
708
. 10.1016/j.enpol.2009.11.014
4.
Avadikyan
,
A.
, and
Llerena
,
P.
,
2010
, “
A Real Options Reasoning Approach to Hybrid Vehicle Investments
,”
Technol. Forecast. Soc. Change
,
77
(
4
), pp.
649
661
. 10.1016/j.techfore.2009.12.002
5.
Li
,
W.
,
Chen
,
S. Q.
,
Peng
,
X. B.
,
Xia
,
M.
,
Gao
,
L.
,
Garg
,
A.
, and
Bao
,
N. S.
,
2019
, “
A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles
,”
Engineering
,
5
(
4
), pp.
795
802
. 10.1016/j.eng.2019.07.005
6.
Lu
,
L. G.
,
Han
,
X. B.
,
Li
,
J. Q.
,
Hua
,
J. F.
, and
Ouyang
,
M. G.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
. 10.1016/j.jpowsour.2012.10.060
7.
Greco
,
A.
,
Cao
,
D. P.
,
Jiang
,
X.
, and
Yang
,
H.
,
2014
, “
A Theoretical and Computational Study of Lithium-Ion Battery Thermal Management for Electric Vehicles Using Heat Pipes
,”
J. Power Sources
,
257
, pp.
344
355
. 10.1016/j.jpowsour.2014.02.004
8.
Li
,
W.
,
Xiao
,
M.
,
Peng
,
X. B.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
A Surrogate Thermal Modeling and Parametric Optimization of Battery Pack With Air Cooling for EVs
,”
Appl. Therm. Eng.
,
147
, pp.
90
100
. 10.1016/j.applthermaleng.2018.10.060
9.
Sabbah
,
R.
,
Kizilel
,
R.
,
Selman
,
J. R.
, and
Al-Hallaj
,
S.
,
2008
, “
Active (Air-Cooled) vs. Passive (Phase Change Material) Thermal Management of High Power Lithium-ion Packs: Limitation of Temperature Rise and Uniformity of Temperature Distribution
,”
J. Power Sources
,
182
(
2
), pp.
630
638
. 10.1016/j.jpowsour.2008.03.082
10.
Pesaran
,
A. A.
,
2001
, “
Battery Thermal Management in EV and HEVs: Issues and Solutions
,”
Battery Manuf.
,
43
(
5
), pp.
34
49
.
11.
Wei
,
Y. Y.
, and
Agelin-Chaab
,
M.
,
2018
, “
Experimental Investigation of a Novel Hybrid Cooling Method for Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
136
, pp.
375
387
. 10.1016/j.applthermaleng.2018.03.024
12.
Nieto
,
N.
,
Diaz
,
L.
,
Gastelurrutia
,
J.
,
Blanco
,
F.
,
Ramos
,
J. C.
, and
Rivas
,
A.
,
2014
, “
Novel Thermal Management System Design Methodology for Power Lithium-Ion Battery
,”
J. Power Sources
,
272
, pp.
291
302
. 10.1016/j.jpowsour.2014.07.169
13.
Zhao
,
J. T.
,
Rao
,
Z. H.
, and
Li
,
Y. M.
,
2015
, “
Thermal Performance of Mini-Channel Liquid Cooled Cylinder Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manage.
,
103
, pp.
157
165
. 10.1016/j.enconman.2015.06.056
14.
Mohammadian
,
S. K.
,
He
,
Y. L.
, and
Zhang
,
Y. W.
,
2015
, “
Internal Cooling of a Lithium-Ion Battery Using Electrolyte as Coolant Through Microchannels Embedded Inside the Electrodes
,”
J. Power Sources
,
293
, pp.
458
466
. 10.1016/j.jpowsour.2015.05.055
15.
Basu
,
S.
,
Hariharan
,
K. S.
,
Kolake
,
S. M.
,
Song
,
T.
,
Sohn
,
D. K.
, and
Yeo
,
T.
,
2016
, “
Coupled Electrochemical Thermal Modelling of a Novel Li-Ion Battery Pack Thermal Management System
,”
Appl. Energy
,
181
, pp.
1
13
. 10.1016/j.apenergy.2016.08.049
16.
Malik
,
M.
,
Dincer
,
I.
,
Rosen
,
M. A.
,
Mathew
,
M.
, and
Fowler
,
M.
,
2018
, “
Thermal and Electrical Performance Evaluations of Series Connected Li-Ion Batteries in a Pack With Liquid Cooling
,”
Appl. Therm. Eng.
,
129
, pp.
472
481
. 10.1016/j.applthermaleng.2017.10.029
17.
Panchal
,
S.
,
Akhoundzadeh
,
M. H.
,
Raahemifar
,
K.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2019
, “
Heat and Mass Transfer Modeling and Investigation of Multiple LiFePO4/Graphite Batteries in a Pack at Low C-Rates With Water-Cooling
,”
Int. J. Heat Mass Transfer
,
135
, pp.
368
377
. 10.1016/j.ijheatmasstransfer.2019.01.076
18.
Al-Zareer
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2018
, “
A Review of Novel Thermal Management Systems for Batteries
,”
Int. J. Energy Res.
,
42
(
10
), pp.
3182
3205
. 10.1002/er.4095
19.
Tan
,
M. H. Y.
,
Najafi
,
A. R.
,
Pety
,
S. J.
,
White
,
S. R.
, and
Geubelle
,
P. H.
,
2018
, “
Multi-objective Design of Microvascular Panels for Battery Cooling Applications
,”
Appl. Therm. Eng.
,
135
, pp.
145
157
. 10.1016/j.applthermaleng.2018.02.028
20.
Zhao
,
C. R.
,
Sousa
,
A. C. M.
, and
Jiang
,
F. M.
,
2019
, “
Minimization of Thermal Non-uniformity in Lithium-Ion Battery Pack Cooled by Channeled Liquid Flow
,”
Int. J. Heat Mass Transfer
,
129
, pp.
660
670
. 10.1016/j.ijheatmasstransfer.2018.10.017
21.
Srinivaas
,
S.
,
Li
,
W.
,
Garg
,
A.
,
Peng
,
X.
, and
Gao
,
L.
,
2020
, “
Battery Thermal Management System Design: Role of Influence of Nano-Fluids, Flow Directions and Channels
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
2
), p.
021110
. 10.1115/1.4045325
22.
Rao
,
Z. H.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y. M.
,
2017
, “
Thermal Performance of Liquid Cooling Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1514
1522
. 10.1016/j.applthermaleng.2017.06.059
23.
Smith
,
J.
,
Hinterberger
,
M.
,
Hable
,
P.
, and
Koehler
,
J.
,
2014
, “
Simulative Method for Determining the Optimal Operating Conditions for a Cooling Plate for Lithium-Ion Battery Cell Modules
,”
J. Power Sources
,
267
, pp.
784
792
. 10.1016/j.jpowsour.2014.06.001
24.
Li
,
W.
,
Xiao
,
M.
, and
Gao
,
L.
,
2019
, “
Improved Collaboration Pursuing Method for Multidisciplinary Robust Design Optimization
,”
Struct. Multidiscip. Optim.
,
59
(
6
), pp.
1949
1968
. 10.1007/s00158-018-2165-2
25.
Huang
,
Y. Q.
,
Lu
,
Y. J.
,
Huang
,
R.
,
Chen
,
J. X.
,
Chen
,
F. F.
,
Liu
,
Z. T.
,
Yu
,
X. L.
, and
Roskilly
,
A. P.
,
2017
, “
Study on the Thermal Interaction and Heat Dissipation of Cylindrical Lithium-Ion Battery Cells
,”
Proceedings of the 9th International Conference on Applied Energy
,
Cardiff, UK
,
Aug. 21–24
, Vol.
142
, pp.
4029
4036
.
26.
Versteeg
,
H.
, and
Malalasekera
,
W.
,
1995
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson
,
Essex, UK
.
27.
Liu
,
X.
,
Zhu
,
Q.
, and
Lu
,
H.
,
2014
, “
Modeling Multiresponse Surfaces for Airfoil Design With Multiple-Output-Gaussian-Process Regression
,”
J. Aircr.
,
51
(
3
), pp.
740
747
. 10.2514/1.C032465
28.
Rottmann
,
A.
, and
Burgard
,
W.
,
2009
, “
Adaptive Autonomous Control Using Online Value Iteration With Gaussian Processes
,”
IEEE Int. Conf. Rob. Biomimetics
, pp.
3033
3038
. 10.1109/robot.2009.5152660
29.
Maier
,
M.
,
Rupenyan
,
A.
,
Bobst
,
C.
, and
Wegener
,
K.
,
2020
, “
Self-optimizing Grinding Machines Using Gaussian Process Models and Constrained Bayesian Optimization
,”
Int. J. Adv. Des. Manuf. Technol.
,
108
(
1–2
), pp.
539
552
. 10.1007/s00170-020-05369-9
30.
Li
,
W.
,
Gao
,
L.
, and
Xiao
,
M.
,
2020
, “
Multidisciplinary Robust Design Optimization Under Parameter and Model Uncertainties
,”
Eng. Optim.
,
52
(
3
), pp.
426
445
. 10.1080/0305215X.2019.1590564
31.
Fang
,
K. T.
,
Lin
,
D. K. J.
,
Winker
,
P.
, and
Zhang
,
Y.
,
2000
, “
Uniform Design: Theory and Application
,”
Technometrics
,
42
(
3
), pp.
237
248
. 10.1080/00401706.2000.10486045
32.
Ahmadi
,
M.
,
Vahabzadeh
,
F.
,
Bonakdarpour
,
B.
,
Mofarrah
,
E.
, and
Mehranian
,
M.
,
2005
, “
Application of the Central Composite Design and Response Surface Methodology to the Advanced Treatment of Olive Oil Processing Wastewater Using Fenton's Peroxidation
,”
J. Hazard. Mater.
,
123
(
1–3
), pp.
187
195
. 10.1016/j.jhazmat.2005.03.042
33.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
. 10.1080/00401706.2000.10485979
34.
Arlot
,
S.
, and
Celisse
,
A.
,
2010
, “
A Survey of Cross-Validation Procedures for Model Selection
,”
Stat. Surv.
,
4
, pp.
40
79
. 10.1214/09-SS054
35.
Li
,
W.
,
Peng
,
X. B.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
Multi-objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in an Electric Vehicle
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3668
3680
. 10.1002/er.4518
36.
Park
,
S.
, and
Jung
,
D. H.
,
2013
, “
Battery Cell Arrangement and Heat Transfer Fluid Effects on the Parasitic Power Consumption and the Cell Temperature Distribution in a Hybrid Electric Vehicle
,”
J. Power Sources
,
227
, pp.
191
198
. 10.1016/j.jpowsour.2012.11.039
37.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
You do not currently have access to this content.