Abstract

An experimental investigation of subcooled flow boiling in a rectangular mini-gap channel with the dimension of 0.5 mm × 5 mm was conducted with deionized water as the working fluid. Fabricated by electroless plating method and high-temperature treatment, the copper-based hydrophobic micro-porous surface was utilized in the experiments. High-speed flow visualization was conducted to picture the flow patterns during the experiment. The mass fluxes were in the range of 200–400 kg/m2s, and the wall heat fluxes were spanned from 35 to 350 kW/m2. The onset of flow boiling, heat transfer coefficient, and pressure drop were discussed with the variation of heat fluxes and mass fluxes, the trends of which were analyzed along with the flow patterns. Because of the numerous nucleation sites on micro-porous surface, the superheat required for the onset of boiling are of small amounts of about 2 K. Due to the intense nucleation process, the boiling curves appeared to be a negative slope after the onset of boiling, which was more obvious in the lower mass flux conditions. In the high heat flux conditions, heat transfer coefficients under lower mass flux condition were higher because the intense nucleation process occurred and the elongated bubble flow along with the film evaporation heat transfer was formed. The film evaporation heat transfer inside the elongated bubble is more efficient to release the latent heat than the nucleate boiling. However, the appearance of the elongated bubble flow would attribute to higher pressure drop and severer pressure drop fluctuation due to its expansion toward upstream.

References

1.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2002
, “
Evolution of Microchannel Flow Passages: Thermohydraulic Performance and Fabrication Technology
,”
ASME 2002 International Mechanical Engineering Congress and Exposition
,
New Orleans, LA
,
Nov. 17–22, American Society of Mechanical Engineers
, pp.
59
72
.
2.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
,
2007
, “
Towards a Thermal Moore's Law
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
462
474
. 10.1109/TADVP.2007.898517
3.
Karayiannis
,
T.
, and
Mahmoud
,
M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
. 10.1016/j.applthermaleng.2016.08.063
4.
Kharangate
,
C. R.
, and
Mudawar
,
I.
,
2017
, “
Review of Computational Studies on Boiling and Condensation
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1164
1196
. 10.1016/j.ijheatmasstransfer.2016.12.065
5.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2012
, “
Experimental Investigation of Local Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap Channel
,”
Int. J. Multiphase Flow
,
42
, pp.
164
174
. 10.1016/j.ijmultiphaseflow.2012.02.007
6.
Xu
,
J.
,
Cheng
,
P.
, and
Zhao
,
T.
,
1999
, “
Gas-Liquid Two-Phase Flow Regimes in Rectangular Channels With Mini/Micro Gaps
,”
Int. J. Multiphase Flow
,
25
(
3
), pp.
411
432
. 10.1016/S0301-9322(98)00057-3
7.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2013
, “
A Comparative Study of Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap and Microchannel Heat Sink and an Evaluation of Microgap Heat Sink for Hotspot Mitigation
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
335
347
. 10.1016/j.ijheatmasstransfer.2012.11.020
8.
Jones
,
B. J.
, and
Garimella
,
S. V.
,
2009
, “
Surface Roughness Effects on Flow Boiling in Microchannels
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
4
), p.
041007
. 10.1115/1.4001804
9.
Alam
,
T.
,
Lee
,
P. S.
, and
Yap
,
C. R.
,
2013
, “
Effects of Surface Roughness on Flow Boiling in Silicon Microgap Heat Sinks
,”
Int. J. Heat Mass Transfer
,
64
, pp.
28
41
. 10.1016/j.ijheatmasstransfer.2013.04.009
10.
Sun
,
Y.
,
Zhang
,
L.
,
Xu
,
H.
, and
Zhong
,
X.
,
2011
, “
Flow Boiling Enhancement of FC-72 From Microporous Surfaces in Minichannels
,”
Exp. Therm. Fluid. Sci.
,
35
(
7
), pp.
1418
1426
. 10.1016/j.expthermflusci.2011.05.010
11.
Morshed
,
A.
,
Yang
,
F.
,
Ali
,
M. Y.
,
Khan
,
J. A.
, and
Li
,
C.
,
2012
, “
Enhanced Flow Boiling in a Microchannel With Integration of Nanowires
,”
Appl. Therm. Eng.
,
32
, pp.
68
75
. 10.1016/j.applthermaleng.2011.08.031
12.
Li
,
D.
,
Wu
,
G.
,
Wang
,
W.
,
Wang
,
Y.
,
Liu
,
D.
,
Zhang
,
D.
,
Chen
,
Y.
,
Peterson
,
G.
, and
Yang
,
R.
,
2012
, “
Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management With Monolithically Integrated Silicon Nanowires
,”
Nano Lett.
,
12
(
7
), pp.
3385
3390
. 10.1021/nl300049f
13.
Jia
,
Y.
,
Xia
,
G.
,
Zong
,
L.
,
Ma
,
D.
, and
Tang
,
Y.
,
2018
, “
A Comparative Study of Experimental Flow Boiling Heat Transfer and Pressure Drop Characteristics in Porous-Wall Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
127
, pp.
818
833
. 10.1016/j.ijheatmasstransfer.2018.06.090
14.
Deng
,
D.
,
Chen
,
R.
,
Tang
,
Y.
,
Lu
,
L.
,
Zeng
,
T.
, and
Wan
,
W.
,
2015
, “
A Comparative Study of Flow Boiling Performance in Reentrant Copper Microchannels and Reentrant Porous Microchannels With Multi-Scale Rough Surface
,”
Int. J. Multiphase Flow
,
72
, pp.
275
287
. 10.1016/j.ijmultiphaseflow.2015.01.004
15.
Kumar
,
C. S.
,
Suresh
,
S.
,
Yang
,
L.
,
Yang
,
Q.
, and
Aravind
,
S.
,
2014
, “
Flow Boiling Heat Transfer Enhancement Using Carbon Nanotube Coatings
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
166
175
. 10.1016/j.applthermaleng.2013.12.053
16.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
, and
Colasson
,
S.
,
2012
, “
Flow Boiling of Water on Nanocoated Surfaces in a Microchannel
,”
ASME J. Heat Transfer
,
134
(
2
), p.
020901
. 10.1115/1.4004935
17.
Sun
,
Y.
,
Zhang
,
L.
,
Xu
,
H.
, and
Zhong
,
X.
,
2011
, “
Subcooled Flow Boiling Heat Transfer From Microporous Surfaces in a Small Channel
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
881
889
. 10.1016/j.ijthermalsci.2011.01.019
18.
Liang
,
G.
, and
Mudawar
,
I.
,
2020
, “
Review of Channel Flow Boiling Enhancement by Surface Modification, and Instability Suppression Schemes
,”
Int. J. Heat Mass Transfer
,
146
, p.
118864
. 10.1016/j.ijheatmasstransfer.2019.118864
19.
Sujith Kumar
,
C. S.
,
Udaya Kumar
,
G.
,
Mata Arenales
,
M. R.
,
Hsu
,
C.-C.
,
Suresh
,
S.
, and
Chen
,
P.-H.
,
2018
, “
Elucidating the Mechanisms Behind the Boiling Heat Transfer Enhancement Using Nano-Structured Surface Coatings
,”
Appl. Therm. Eng.
,
137
, pp.
868
891
. 10.1016/j.applthermaleng.2018.03.092
20.
Li
,
W.
,
Lin
,
Y.
,
Zhou
,
K.
,
Li
,
J.
, and
Zhu
,
J.
,
2019
, “
Local Heat Transfer of Saturated Flow Boiling in Vertical Narrow Microchannel
,”
Int. J. Therm. Sci.
,
145
, p.
105996
. 10.1016/j.ijthermalsci.2019.105996
21.
Zhou
,
K.
,
Coyle
,
C.
,
Li
,
J.
,
Buongiorno
,
J.
, and
Li
,
W.
,
2017
, “
Flow Boiling in Vertical Narrow Microchannels of Different Surface Wettability Characteristics
,”
Int. J. Heat Mass Transfer
,
109
, pp.
103
114
. 10.1016/j.ijheatmasstransfer.2017.01.111
22.
Li
,
W.
,
Li
,
J.
,
Feng
,
Z.
,
Zhou
,
K.
, and
Wu
,
Z.
,
2017
, “
Local Heat Transfer in Subcooled Flow Boiling in a Vertical Mini-Gap Channel
,”
Int. J. Heat Mass Transfer
,
110
, pp.
796
804
. 10.1016/j.ijheatmasstransfer.2017.03.086
23.
Li
,
W.
,
Zhou
,
K.
,
Li
,
J.
,
Feng
,
Z.
, and
Zhu
,
H.
,
2018
, “
Effects of Heat Flux, Mass Flux and Two-Phase Inlet Quality on Flow Boiling in a Vertical Superhydrophilic Microchannel
,”
Int. J. Heat Mass Transfer
,
119
, pp.
601
613
. 10.1016/j.ijheatmasstransfer.2017.11.145
24.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks––I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2755
2771
. 10.1016/S0017-9310(03)00041-3
25.
Deng
,
D.
,
Wan
,
W.
,
Tang
,
Y.
,
Wan
,
Z.
, and
Liang
,
D.
,
2015
, “
Experimental Investigations on Flow Boiling Performance of Reentrant and Rectangular Microchannels—A Comparative Study
,”
Int. J. Heat Mass Transfer
,
82
, pp.
435
446
. 10.1016/j.ijheatmasstransfer.2014.11.074
26.
Zhang
,
P.
, and
Lv
,
F. Y.
,
2015
, “
A Review of the Recent Advances in Superhydrophobic Surfaces and the Emerging Energy-Related Applications
,”
Energy
,
82
, pp.
1068
1087
. 10.1016/j.energy.2015.01.061
27.
Li
,
W.
,
Chen
,
Z.
,
Li
,
J.
,
Sheng
,
K.
, and
Zhu
,
J.
,
2019
, “
Subcooled Flow Boiling on Hydrophilic and Super-Hydrophilic Surfaces in Microchannel Under Different Orientations
,”
Int. J. Heat Mass Transfer
,
129
, pp.
635
649
. 10.1016/j.ijheatmasstransfer.2018.10.003
28.
Jayaramu
,
P.
,
Gedupudi
,
S.
, and
Das
,
S. K.
,
2019
, “
Influence of Heating Surface Characteristics on Flow Boiling in a Copper Microchannel: Experimental Investigation and Assessment of Correlations
,”
Int. J. Heat Mass Transfer
,
128
, pp.
290
318
. 10.1016/j.ijheatmasstransfer.2018.08.075
29.
Chen
,
T.
, and
Garimella
,
S. V.
,
2011
, “
Local Heat Transfer Distribution and Effect of Instabilities During Flow Boiling in a Silicon Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
54
(
15
), pp.
3179
3190
. 10.1016/j.ijheatmasstransfer.2011.04.012
30.
Baldassari
,
C.
, and
Marengo
,
M.
,
2013
, “
Flow Boiling in Microchannels and Microgravity
,”
Prog. Energy Combust. Sci.
,
39
(
1
), pp.
1
36
. 10.1016/j.pecs.2012.10.001
31.
Asadi
,
M.
,
Xie
,
G.
, and
Sunden
,
B.
,
2014
, “
A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-Phase Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
34
53
. 10.1016/j.ijheatmasstransfer.2014.07.090
32.
Thome
,
J. R.
, and
Consolini
,
L.
,
2010
, “
Mechanisms of Boiling in Micro-Channels: Critical Assessment
,”
Heat Transfer Eng.
,
31
(
4
), pp.
288
297
. 10.1080/01457630903312049
33.
Mathew
,
J.
,
Lee
,
P.-S.
,
Wu
,
T.
, and
Yap
,
C. R.
,
2019
, “
Experimental Study of Flow Boiling in a Hybrid Microchannel-Microgap Heat Sink
,”
Int. J. Heat Mass Transfer
,
135
, pp.
1167
1191
. 10.1016/j.ijheatmasstransfer.2019.02.033
You do not currently have access to this content.