Abstract

In order to systematically assess the influence of the internal structure on the outgassing property, alumina ceramics with different porosity were first prepared by four sintering processes, and then their measurements of the outgassing rate and desorption gas components were performed using the throughput method. Experimental results show that when the alumina sample is exposed to vacuum for just a few hours, surface outgassing dominants and the main outgassing component is water vapor. After sufficiently long vacuum extraction, the gas inside the alumina ceramic is gradually released. In this test, the gas released from the internal structure plays a dominant role after 48 h pumping of 600 L/s. Combined with the microstructure analysis, it is further concluded that the denser the alumina structure is, the lower the vacuum outgassing rate is and the lower the partial pressure of the individual gas components is. It can also be observed that the internal structure still has some influence on the outgassing characteristics of the material, although to a slightly lower degree than the surface properties compared to previous studies.

References

1.
Takemura
H.
and
Fukushima
H.
, “
Recent Trends of Advanced Ceramics Industry and Fine Ceramics Roadmap 2050
,”
International Journal of Applied Ceramic Technology
20
, no. 
2
(March/April
2023
):
681
688
, https://doi.org/10.1111/ijac.14254
2.
Ruys
A. J.
,
Alumina Ceramics
(
Duxford, UK
:
Woodhead Publishing
,
2019
).
3.
Fayazbakhsh
K.
and
Abedian
A.
, “
Materials Selection for Applications in Space Environment Considering Outgassing Phenomenon
,”
Advances in Space Research
45
, no. 
6
(March
2010
):
741
749
, https://doi.org/10.1016/j.asr.2009.11.017
4.
Nishiwaki
M.
and
Kato
S.
, “
Electron Stimulated Gas Desorption from Copper Material and Its Surface Analysis
,”
Applied Surface Science
169–170
(January
2001
):
700
705
, https://doi.org/10.1016/S0169-4332(00)00764-9
5.
Shoshin
A.
,
Burdakov
A.
,
Ivantsivskiy
M.
,
Klimenko
M.
,
Polosatkin
S.
, and
Semenov
A.
, “
Properties of Boron Carbide Ceramics Made by Various Methods for Use in ITER
,”
Fusion Engineering and Design
146
, Part B (September
2019
):
2007
2010
, https://doi.org/10.1016/j.fusengdes.2019.03.088
6.
Mertens
B. M.
,
van der Zwan
B.
,
de Jager
P. W. H.
,
Leenders
M.
,
Werij
H. G. C.
,
Benschop
J. P. H.
, and
van Dijsseldonk
A. J. J.
, “
Mitigation of Surface Contamination from Resist Outgassing in EUV Lithography
,”
Microelectronic Engineering
53
, nos. 
1–4
(June
2000
):
659
662
, https://doi.org/10.1016/S0167-9317(00)00399-3
7.
Hoffman
D.
,
Singh
B.
, and
Thomas
J.
,
Handbook of Vacuum Science and Technology
(
Cambridge, MA
:
Academic Press
,
1997
).
8.
Liu
Y. W.
,
Tian
H.
,
Han
Y.
,
Xu
Z. Y.
,
Meng
M. F.
, and
Zhang
H. L.
, “
The Temperature Variation of a Thermionic Cathode during Electron Emission
,”
Science in China Series E: Technological Sciences
51
, no. 
9
(September
2008
):
1497
1501
, https://doi.org/10.1007/s11431-008-0161-2
9.
Gärtner
G.
,
Janiel
P.
, and
Raasch
D.
, “
Direct Determination of Electrical Conductivity of Oxide Cathode
,”
Applied Surface Science
201
, nos. 
1–4
(November
2002
):
35
40
, https://doi.org/10.1016/S0169-4332(02)00251-9
10.
Lewin
G.
,
Fundamentals of Vacuum Science and Technology
(
New York
:
McGraw Hill, Inc.
,
1965
).
11.
Zhang
D.
,
Zeng
X.
,
Feng
Y.
,
Lu
Y.
, and
Zhao
L.
, “
Review of Measuring Methods of Outgassing Rate
” (in Chinese),
Vacuum
47
, no. 
6
(
2010
):
1
5
.
12.
Luo
Y.
,
Wu
X.
,
Wang
K.
, and
Wang
Y.
, “
Comparative Study on Surface Influence to Outgassing Performance of Aluminum Alloy
,”
Applied Surface Science
502
(February
2020
): 144166, https://doi.org/10.1016/j.apsusc.2019.144166
13.
Luo
Y.
,
Wang
K.
,
Wu
X.
,
Xie
W.
,
Li
H.
,
Sha
P.
, and
Han
X.
, “
Vacuum Outgassing Characteristics of Electroplated Parts
” (in Chinese),
Chinese Journal of Vacuum Science and Technology
42
, no. 
8
(August
2022
):
578
583
, https://doi.org/10.13922/j.cnki.cjvst.202202014
14.
Luo
Y.
,
Wu
X.
,
Wang
K.
, and
Wang
Y.
, “
Comparative Study on the Outgassing Rate of Materials Using Different Methods
,”
Metrology Society of India
31
, no. 
1
(March
2016
):
61
68
, https://doi.org/10.1007/s12647-015-0160-2
15.
Yang
Y.
,
Saitoh
K.
, and
Tsukahara
S.
, “
An Improved Throughput Method for the Measurement of Outgassing Rates of Materials
,”
Vacuum
46
, no. 
12
(December
1995
):
1371
1376
, https://doi.org/10.1016/0042-207X(95)00154-9
16.
Gangradey
R.
,
Mukherjee
S.
,
Panchal
P.
, and
Prakash
N. R.
, “
OGMS: A Facility to Measure Outgassing Rate of Materials
,”
Procedia Materials Science
6
(
2014
):
272
277
, https://doi.org/10.1016/j.mspro.2014.07.034
17.
Suleiman
B.
,
Zhang
H.
,
Ding
Y.
, and
Li
Y.
, “
Microstructure and Mechanical Properties of Cold Sintered Porous Alumina Ceramics
,”
Ceramics International
48
, no. 
10
(May
2022
):
13531
13540
, https://doi.org/10.1016/j.ceramint.2022.01.232
18.
Vemoori
R.
,
Bejugama
S.
, and
Khanra
A. K.
, “
Fabrication and Characterization of Alumina and Zirconia-Toughened Alumina Porous Structures
,”
Ceramics International
49
, no. 
13
(July
2023
):
21708
21715
, https://doi.org/10.1016/j.ceramint.2023.03.310
19.
Zhao
J.
,
Shimai
S.
,
Zhang
J.
,
Mao
X.
,
Liu
J.
,
Yang
D.
, and
Wang
S.
, “
Highly Closed Porosity and High Strength Alumina Ceramic Foams Fabricated by Colloidal Hydrophobic Modification
,”
Open Ceramics
9
(March
2022
): 100212, https://doi.org/10.1016/j.oceram.2021.100212
20.
Alzukaimi
J.
and
Jabrah
R.
, “
Development of High Strength Large Open Porosity Alumina Ceramics Using the Sacrificial Phase Route: The Role of the Sacrificial Phase Fineness
,”
Ceramics International
49
, no. 
2
(January
2023
):
2923
2933
, https://doi.org/10.1016/j.ceramint.2022.09.277
21.
Fu
L.
,
Gu
H.
,
Huang
A.
, and
Ni
H.
, “
Correlations among Processing Parameters and Porosity of a Lightweight Alumina
,”
Ceramics International
44
, no. 
12
(August
2018
):
14076
14081
, https://doi.org/10.1016/j.ceramint.2018.05.005
22.
Yoshimura
N.
,
Vacuum Technology
(
Berlin, Germany
:
Springer-Verlag
,
2008
).
23.
Lafferty
J. M.
,
Foundations of Vacuum Science and Technology
(
New York
:
John Wiley & Sons, Inc.
,
1998
).
24.
A. Berman “
Water Vapor in Vacuum Systems
,”
Vacuum
47
, no. 
4
(April
1996
):
327
332
, https://doi.org/10.1016/0042-207X(95)00246-4
This content is only available via PDF.
You do not currently have access to this content.