Abstract

Climate change is happening, and there is a general consensus that measures to drastically reduce emissions must be taken. Nevertheless, its implications on new buildings and renovations are not fully understood yet. Bioclimatic building design is based on the knowledge of passive design strategies potential for a location. However, traditionally used passive strategies may no longer be the correct design approach in the future. A methodological contribution for the assessment of the influence of climate change on passive building strategies in temperate climates is presented. Based on the top priority Intergovernmental Panel on Climate Change scenarios of the 6th assessment report (AR6) the shared socio-economic pathways (SSP) and their equivalences with the prior representative concentration pathways (RCP), the effects of climate change on different cooling and heating strategies are examined for a continental temperate-cold desert climate with significant daily and annual variation. The results are integrated directly into a selected case study with the intention of exemplifying a concrete application. The findings of this study showed that the shading season is expanding even toward the transitional months, such as April and October. Future climate-adapted buildings in temperate climatic zones will have to confront overheating. Moreover, in the particular studied case, present and future total energy requirements seem similar and variations are perceived as low between scenarios. The main discussion focuses on the type of energy required that will turn from natural gas (net to primary energy conversion factor = 1.25) to electricity (net to primary energy conversion factor = 3.30).

References

1.
IPCC—Intergovernmental Panel on Climate Change
,
2023
, “
AR6—6th IPCC Assessment Report/Intergovernmental Panel on Climate Change 2023
,” https://www.ipcc.ch/assessment-report/ar6/
2.
IPCC—Intergovernmental Panel on Climate Change
,
2018
, “
Global Warming of 1.5 °C. An IPCC Special Report
,” https://www.ipcc.ch/sr15/
3.
UNEP—United Nations Environment Programme
,
2022
, “
UNEP Emissions Gap Report
,” https://www.unep.org/resources/emissions-gap-report-2022
4.
UNEP—United Nations Environment Programme
,
2021
, “
The Production Gap
,” https://productiongap.org/2021report/
5.
WMO—World Meteorological Organization
,
2022
, “
State of Climate Services
,” https://library.wmo.int/index.php?lvl=notice_display&id=22136#.Y2EyBnbMI2w
6.
WMO—World Meteorological Organization
,
2021
, “
United in Science 2021: A Multi-organization High-Level Compilation of the Latest Climate Science Information
,” https://library.wmo.int/index.php?lvl=notice_display&id=21946#.YUi5DLhKhaR
7.
UN—United Nations
,
2023
, “
Data Portal. Population Division
,” https://population.un.org/dataportal/home
8.
PWC—PriceWaterhouseCoopers
,
2023
, “
The World in 2050. The Long View: How Will the Global Economic Order Change by 2050?
,” https://www.pwc.com/gx/en/research-insights/economy/the-world-in-2050.html
9.
WB—World Bank
,
2023
, “
Urban Development
,” https://www.worldbank.org/en/topic/urbandevelopment/overview
10.
IEA—International Energy Agency
,
2018
, “
World Energy Outlook 2018
,” https://www.iea.org/weo/.
11.
EEA—European Environmental Agency
,
2023
, “
Building Renovation: Where Circular Economy and Climate Meet
,” https://www.eea.europa.eu/publications/building-renovation-where-circular-economy
12.
Bhamare
,
D. K.
,
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2019
, “
Passive Cooling Techniques for Building and Their Applicability in Different Climatic Zones—The State of Art
,”
Energy Build.
,
198
, pp.
467
490
.
13.
Zhai
,
Z. J.
, and
Helman
,
J. M.
,
2019
, “
Implications of Climate Changes to Building Energy and Design
,”
Sustain. Cities Soc.
,
44
, pp.
511
519
.
14.
EC—European Commission
,
2023
, “
European Construction Sector Observatory. Analytical Report on Improving Resource Efficiency
,” https://ec.europa.eu/growth/sectors/construction/observatory_en
15.
EC—European Commission
,
2020
, “
Energy Efficiency in Buildings
,” https://commission.europa.eu/news/focus-energy-efficiency-buildings-2020-02-17_en.
16.
Vilches
,
A.
,
Garcia-Martinez
,
A.
, and
Sanchez-Montañes
,
B.
,
2017
, “
Life Cycle Assessment (LCA) of Building Refurbishment: A Literature Review
,”
Energy Build.
,
135
, pp.
286
301
.
17.
Voss
,
K.
,
2000
, “
Solar Energy in Building Renovation—Results and Experience of International Demonstration Buildings
,”
Build. Environ.
,
32
(
3
), pp.
291
302
.
18.
Chalmers
,
P.
,
2015
, “
Climate Change: Implications for Buildings—Key Findings From the Intergovernmental Panel on Climate Change Fifth Assessment Report
,” Cambridge University Press, Cambridge, UK.
19.
Ganem
,
C.
,
2006
, “
Rehabilitación Ambiental de Viviendas
,”
Ph.D. thesis
,
Polytechnic University of Catalonia
,
Barcelona, Spain
.
20.
Elias
,
S. A.
,
2018
, “Global Change Impacts on the Biosphere,”
. Reference Module in Earth Systems and Environmental Sciences. Encyclopedia of the Anthropocene
, Vol.
2
,
D. A.
Dellasala
, and
M. I.
Goldstein
, eds.,
Elsevier
,
Amsterdam, Netherlands
, pp.
81
94
.
21.
Li
,
D. H. W.
,
Yang
,
L.
, and
Lam
,
J. C.
,
2012
, “
Impact of Climate Change on Energy Use in the Built Environment in Different Climate Zones—A Review
,”
Energy
,
42
(
1
), pp.
103
112
.
22.
Brager
,
G. S.
, and
De Dear
,
R. J.
,
1998
, “
Thermal Adaptation in the Built Environment: A Literature Review
,”
Energy Build.
,
27
(
1
), pp.
83
96
.
23.
Pajek
,
L.
, and
Košir
,
M.
,
2018
, “
Implications of Present and Upcoming Changes in Bioclimatic Potential for Energy Performance of Residential Buildings
,”
Build. Environ.
,
127
, pp.
157
172
.
24.
Ganem Karlen
,
C.
, and
Barea Paci
,
G. J.
,
2021
, “A Methodology for Assessing the Impact of Climate Change on Building Energy Consumption,”
Urban Microclimate Modelling for Comfort and Energy Studies
,
M.
Palme
, and
A.
Salvati
, eds.,
Springer
,
Cham
.
25.
Ganem
,
C.
,
Barea
,
G.
, and
Andreoni
,
S.
,
2020
, “
Assessing Buildings’ Adaptation to Climate Change
,”
Book of Proceedings of the 35th PLEA Conference. Sustainable Architecture and Urban Design, Planning Post Carbon Cities
,
A Coruña, Spain
.
26.
Barea
,
G. J.
,
Mercado
,
M. V.
,
Filippín
,
M. C.
,
Monteoliva
,
J. M.
, and
Villalba
,
A. M.
,
2022
, “
New Paradigms in Bioclimatic Design Toward Climatic Change in Arid Environments
,”
Build. Environ.
,
266
, p.
112100
.
27.
Beck
,
H. E.
,
Zimmermann
,
N. E.
,
McVicar
,
T. R.
,
Vergopolan
,
N.
,
Berg
,
A.
, and
Wood
,
E. F.
,
2018
, “
Present and Future Köppen-Geiger Climate Classification Maps at 1-km Resolution
,”
Sci. Data
,
5
(
1
), p.
180214
.
28.
SMN—Servicio Meteorológico Nacional
,
2023
, “
Estadísticas Climáticas
,” https://www.smn.gob.ar/estadisticas
29.
Krainer
,
A.
,
2008
, “
Passivhaus Contra Bioclimatic Design
,”
Bauphysik
,
30
(
6
), pp.
393
404
.
30.
Olgyay
,
V.
,
1963
,
Design With Climate: Bioclimatic Approach to Architectural Regionalism
,
Princeton University Press
,
Princeton, NJ
.
31.
Košir
,
M.
,
2019
,
Climate Adaptability of Buildings: Bioclimatic Design in the Light of Climate Change
,
Springer International Publishing
,
Cham
.
32.
Košir
,
M.
, and
Pajek
,
L.
,
2017
, “
BcChart v2.0—A Tool for Bioclimatic Potential Evaluation
,”
Proceedings of the SHC 2017, International Solar Energy Society
,
Abu Dhabi
,
Oct. 29–Nov. 2
, pp.
1
10
.
33.
Climate.OneBuilding.Org
,
2023
, “
Repository of Free Climate Data for Building Performance Simulation
,” https://climate.onebuilding.org/
34.
O'Neill
,
B. C.
,
Tebaldi
,
C.
,
Van Vuuren
,
D. P.
,
Eyring
,
V.
,
Friedlingstein
,
P.
,
Hurtt
,
G.
,
KnuttI
,
R.
, et al
,
2016
, “
The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
,”
Geosci. Model Dev.
,
9
(
9
), pp.
3461
3482
.
35.
Jentsch
,
M. F.
,
Bahaj
,
A. S.
, and
James
,
P. B.
,
2008
, “
Climate Change Future Proofing of Buildings-Generation and Assessment of Building Simulation Weather Files
,”
Energy Build.
,
40
(
12
), pp.
2148
2168
.
36.
Bi
,
D.
,
Dix
,
M.
,
Marsland
,
S.
,
O’farrell
,
S.
,
Sullivan
,
A.
,
Bodman
,
R.
,
Law
,
R.
, et al
,
2020
, “
Configuration and Spin-Up of ACCESS-CM2, the New Generation Australian Community Climate and Earth System Simulator Coupled Model
,”
J. South. Hemisphere Earth Syst. Sci.
,
70
(
1
), pp.
225
251
.
37.
Lorenz
,
R.
,
Pitman
,
A. J.
,
Donat
,
M. G.
,
Hirsch
,
A. L.
,
Kala
,
J.
,
Kowalczyk
,
E.
,
Law
,
R. M.
, and
Srbinovsky
,
J.
,
2014
, “
Representation of Climate Extreme Indices in the ACCESS1.3b Coupled Atmosphere–Land Surface Model
,”
Geosci. Model Dev.
,
7
(
2
), pp.
545
567
.
38.
Stone
,
K. A.
,
Morgenstern
,
O.
,
Karoly
,
J. K.
,
Klekociuk
,
K.
,
French
,
J. F.
,
Abraham
,
L. A.
, and
Schofield
,
R.
,
2016
, “
Evaluation of the ACCESS—Chemistry–Climate Model for the Southern Hemisphere
,”
Atmos. Chem. Phys.
,
16
(
4
), pp.
2401
2415
.
39.
ZIehn
,
T.
,
Chamberlain
,
M. A.
,
Law
,
R. M.
,
Lenton
,
A.
,
Bodman
,
R. W.
,
Dix
,
M.
,
Stevens
,
L.
,
Wang
,
Y.-P.
, and
Srbinovsky
,
J.
,
2020
, “
The Australian Earth System Model: ACCESS-ESM1.5
,”
J. South. Hemisphere Earth Syst. Sci.
,
70
(
1
), pp.
193
214
.
40.
International Energy Agency—IEA, Energy in Buildings and Community Programme—EBC
,
2021
, “
Building Energy Performance Assessment Based on In-Situ Measurements—ANNEX 71 Factsheet
,” https://ieaebc.org/Data/publications/EBC_Annex_71_Factsheet.pdf.
41.
Crawley
,
D. B.
,
Lawrie
,
L. K.
,
Pedersen
,
C. O.
, and
Winkelman
,
F. C.
,
2000
, “
EnergyPlus: Energy Simulation Program
,”
ASHRAE J.
, pp.
49
56
.
42.
Goel
,
S.
and
Rosenberg
,
M. I.
, “
ANSI/ASHRAE/IES, 2016, Standard 90.1-2010.Performance Rating Method Reference Manual
.”
43.
IRAM 11507-1
,
2001
, “
Carpintería de obra. Ventanas exteriores. Requisitos básicos y clasificación
,” https://catalogo.iram.org.ar/#/normas/detalles/7422.
44.
Nicol
,
F.
,
2017
, “
Temperature and Adaptive Comfort in Heated, Cooled and Free-Running Dwellings
,”
Build. Rese. Inf.
,
45
(
7
), pp.
730
744
.
45.
Flores-Larsen
,
S.
,
Filippín
,
M. C.
, and
Bre
,
F.
,
2023
, “
New Metrics for Thermal Resilience of Passive Buildings During Heat Events
,”
Build. Environ.
,
230
, p.
109990
.
You do not currently have access to this content.