Abstract

Switchable building envelope systems, including passive and active systems, have recently seen an increase interest in the literature. Unlike static insulation, switchable insulation systems (SISs) have the ability to adjust the thermal properties of envelope elements. Advanced control strategies for SISs are evaluated in this analysis using genetic algorithm-based optimization techniques. In particular, this study investigates the potential heating and cooling energy savings for deploying optimal controls specific to SIS technologies when applied to residential roofs located in representative US climates. Moreover, energy use and peak demand savings obtained by optimal controls are compared with those obtained from the 2-step rule-based controls. Overall, the analysis results indicate that the maximum monthly additional savings obtained by optimal controls can reach up to 32% compared with 2-step rule sets when an annual analysis is conducted for a residential building located in Golden, CO.

References

1.
Perino
,
M.
, and
Serra
,
V.
,
2015
, “
Switching From Static to Adaptable and Dynamic Building Envelopes: A Paradigm Shift for the Energy Efficiency in Buildings
,”
J. Facade Des. Eng.
,
3
, pp.
143
163
.
2.
Alam
,
M.
,
Singh
,
H.
,
Suresh
,
S.
, and
Redpath
,
D. A. G.
,
2017
, “
Energy and Economic Analysis of Vacuum Insulation Panels (VIPs) Used in Non-Domestic Buildings
,”
Appl. Energy
,
188
, pp.
1
8
.
3.
Idris
,
Y. M.
, and
Mae
,
M.
,
2017
, “
Anti-Insulation Mitigation by Altering the Envelope Layers’ Configuration
,”
Energy Build.
,
141
, pp.
186
204
.
4.
Dehwah
,
A. H. A.
, and
Krarti
,
M.
,
2020
, “
Impact of Switchable Roof Insulation on Energy Performance of US Residential Buildings
,”
Build. Environ.
,
177
, p.
106882
. 10.1016/j.buildenv.2020.106882
5.
Favoino
,
F.
,
Jin
,
Q.
, and
Overend
,
M.
,
2017
, “
Design and Control Optimisation of Adaptive Insulation Systems for Office Buildings. Part 1: Adaptive Technologies and Simulation Framework
,”
Energy
,
127
, pp.
301
309
. 10.1016/j.energy.2017.03.083
6.
Kimber
,
M.
,
Clark
,
W. W.
, and
Schaefer
,
L.
,
2014
, “
Conceptual Analysis and Design of a Partitioned Multifunctional Smart Insulation
,”
Appl. Energy
,
114
, pp.
310
319
. 10.1016/j.apenergy.2013.09.067
7.
Pflug
,
T.
,
Nestle
,
N.
,
Kuhn
,
T. E.
,
Siroux
,
M.
, and
Maurer
,
C.
,
2018
, “
Modeling of Facade Elements With Switchable U-Value
,”
Energy Build.
,
164
, pp.
1
13
. 10.1016/j.enbuild.2017.12.044
8.
Alongi
,
A.
,
Angelotti
,
A.
, and
Mazzarella
,
L.
,
2020
, “
Experimental Validation of a Steady Periodic Analytical Model for Breathing Walls
,”
Build. Environ.
,
168
, p.
106509
. 10.1016/j.buildenv.2019.106509
9.
Spanaki
,
A.
,
Tsoutsos
,
T.
, and
Kolokotsa
,
D.
,
2011
, “
On the Selection and Design of the Proper Roof Pond Variant for Passive Cooling Purposes
,”
Renew. Sustain. Energy Rev.
,
15
, pp.
3523
3533
. 10.1016/j.rser.2011.05.007
10.
Pesenti
,
M.
,
Masera
,
G.
, and
Fiorito
,
F.
,
2018
, “
Exploration of Adaptive Origami Shading Concepts Through Integrated Dynamic Simulations
,”
J. Archit. Eng.
,
24
, pp.
1
14
. 10.1061/(ASCE)AE.1943-5568.0000323
11.
Tällberg
,
R.
,
Jelle
,
B. P.
,
Loonen
,
R.
,
Gao
,
T.
, and
Hamdy
,
M.
,
2019
, “
Comparison of the Energy Saving Potential of Adaptive and Controllable Smart Windows: A State-of-the-Art Review and Simulation Studies of Thermochromic, Photochromic and Electrochromic Technologies
,”
Sol. Energy Mater. Sol. Cells
,
200
, p.
109828
. 10.1016/j.solmat.2019.02.041
12.
Berge
,
A.
,
Hagentoft
,
C. E.
,
Wahlgren
,
P.
, and
Adl-Zarrabi
,
B.
,
2015
, “
Effect From a Variable U-Value in Adaptive Building Components With Controlled Internal Air Pressure
,”
Energy Procedia.
,
78
, pp.
376
381
. 10.1016/j.egypro.2015.11.677
13.
Park
,
B.
,
Iii
,
W. V. S.
, and
Krarti
,
M.
,
2015
, “
Energy Performance Analysis of Variable Thermal Resistance Envelopes in Residential Buildings
,”
Energy Build.
,
103
, pp.
317
325
. 10.1016/j.enbuild.2015.06.061
14.
Rupp
,
S.
, and
Krarti
,
M.
,
2019
, “
Analysis of Multi-Step Control Strategies for Dynamic Insulation Systems
,”
Energy Build.
,
204
, p.
109459, 1–13
. 10.1016/j.enbuild.2019.109459
15.
Choi
,
B.
,
Yeo
,
I.
,
Lee
,
J.
,
Kang
,
W. K.
, and
Song
,
T. H.
,
2016
, “
Pillar-Supported Vacuum Insulation Panel With Multi-Layered Filler Material
,”
Int. J. Heat Mass Transfer
,
102
, pp.
902
910
. 10.1016/j.ijheatmasstransfer.2016.06.032
16.
Fantucci
,
S.
,
Serra
,
V.
, and
Perino
,
M.
,
2015
, “
Dynamic Insulation Systems: Experimental Analysis on a Parietodynamic Wall
,”
Energy Procedia
,
78
, pp.
549
554
. 10.1016/j.egypro.2015.11.734
17.
Koenders
,
S. J. M.
,
Loonen
,
R. C. G. M.
, and
Hensen
,
J. L. M.
,
2018
, “
Investigating the Potential of a Closed-Loop Dynamic Insulation System for Opaque Building Elements
,”
Energy Build.
,
173
, pp.
409
427
. 10.1016/j.enbuild.2018.05.051
18.
Krarti
,
M.
,
2019
,
Dynamic Insulation Systems for Switchable Building Envelope
, US Patent 62/879,655.
19.
Wang
,
Y.
, and
Peterson
,
G. P.
,
2005
, “
Investigation of a Novel Flat Heat Pipe
,”
ASME J. Heat Transfer
,
127
(2), pp.
165
170
. 10.1115/1.1842789
20.
Bichiou
,
Y.
, and
Krarti
,
M.
,
2011
, “
Optimization of Envelope and HVAC Systems Selection for Residential Buildings
,”
Energy Build.
,
43
, pp.
3373
3382
. 10.1016/j.enbuild.2011.08.031
21.
AlAjmi
,
A.
,
Abou-Ziyan
,
H.
, and
Ghoneim
,
A.
,
2016
, “
Achieving Annual and Monthly Net-Zero Energy of Existing Building in Hot Climate
,”
Appl. Energy
,
165
, pp.
511
521
. 10.1016/j.apenergy.2015.11.073
22.
Reynolds
,
J.
,
Rezgui
,
Y.
,
Kwan
,
A.
, and
Piriou
,
S.
,
2018
, “
A Zone-Level, Building Energy Optimisation Combining an Artificial Neural Network, a Genetic Algorithm, and Model Predictive Control
,”
Energy
,
151
, pp.
729
739
. 10.1016/j.energy.2018.03.113
23.
Yu
,
W.
,
Li
,
B.
,
Jia
,
H.
,
Zhang
,
M.
, and
Wang
,
D.
,
2015
, “
Application of Multi-Objective Genetic Algorithm to Optimize Energy Efficiency and Thermal Comfort in Building Design
,”
Energy Build.
,
88
, pp.
135
143
. 10.1016/j.enbuild.2014.11.063
24.
Pombeiro
,
H.
,
Machado
,
M. J.
, and
Silva
,
C.
,
2017
, “
Dynamic Programming and Genetic Algorithms to Control an HVAC System: Maximizing Thermal Comfort and Minimizing Cost With PV Production and Storage
,”
Sustain. Cities Soc.
,
34
, pp.
228
238
. 10.1016/j.scs.2017.05.021
25.
Loonen
,
R. C. G. M.
,
Trčka
,
M.
,
Hensen
,
J. L. M.
,
2011
,
Exploring the Potential of Climate Adaptive Building Shells
,
Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association
,
Sydney, Australia
,
Nov. 14–16
, pp.
2148
2155
.
26.
Kasinalis
,
C.
,
Loonen
,
R. C. G. M.
,
Cóstola
,
D.
, and
Hensen
,
J. L. M.
,
2014
, “
Framework for Assessing the Performance Potential of Seasonally Adaptable Facades Using Multi-Objective Optimization
,”
Energy Build.
,
79
, pp.
106
113
. 10.1016/j.enbuild.2014.04.045
27.
Ooka
,
R.
, and
Komamura
,
K.
,
2009
, “
Optimal Design Method for Building Energy Systems Using Genetic Algorithms
,”
Build. Environ.
,
44
, pp.
1538
1544
. 10.1016/j.buildenv.2008.07.006
28.
Jin
,
Q.
,
Favoino
,
F.
, and
Overend
,
M.
,
2017
, “
Design and Control Optimisation of Adaptive Insulation Systems for Office Buildings. Part 2: A Parametric Study for a Temperate Climate
,”
Energy
,
127
, pp.
634
649
. 10.1016/j.energy.2017.03.096
29.
Shekar
,
V.
, and
Krarti
,
M.
,
2017
, “
Control Strategies for Dynamic Insulation Materials Applied to Commercial Buildings
,”
Energy Build.
,
154
, pp.
305
320
. 10.1016/j.enbuild.2017.08.084
30.
Suer
,
G. A.
,
Yang
,
X.
,
Alhawari
,
O. I.
,
Santos
,
J.
, and
Vazquez
,
R.
,
2012
, “
A Genetic Algorithm Approach for Minimizing Total Tardiness in Single Machine Scheduling
,”
Int. J. Ind. Eng. Manag.
,
3
, pp.
163
171
.
31.
Yoo
,
M.
, and
Yokoyama
,
T.
,
2016
, “
Multiobjective GA for Real Time Task Scheduling
,”
Lect. Notes Eng. Comput. Sci.
,
1
, pp.
174
184
.
32.
Kim
,
J.-L.
,
2010
,
Examining the Relationship Between Algorithm Stopping Criteria and Performance Using Elitist Genetic Algorithm
,
Proceedings of the 2010 Winter Simulation Conference
,
Baltimore, MD
,
Dec. 5–8
, pp.
3220
3227
.
33.
Yigit
,
S.
, and
Ozorhon
,
B.
,
2018
, “
A Simulation-Based Optimization Method for Designing Energy Efficient Buildings
,”
Energy Build.
,
178
, pp.
216
227
.
34.
Chen
,
S.
,
Montgomery
,
J.
, and
Bolufé-Röhler
,
A.
,
2015
, “
Measuring the Curse of Dimensionality and Its Effects on Particle Swarm Optimization and Differential Evolution
,”
Appl. Intell.
,
42
, pp.
514
526
.
35.
Odetayo
,
M.O.
,
1993
,
Optimal Population Size for Genetic Algorithms: An Investigation
,
IEE Colloquium on Genetic Algorithms for Control System Engineering
,
London, UK
,
July 17–22
, pp.
2/1
2/4
.
36.
ASHRAE, ANSI/ASHRAE/IES
. Standard 90.2-2018,
2018
Energy-Efficient Design of Low-Rise Residential Buildings, American Society of Heating
,
Refrigeration and Air-Conditioning Engineers
,
Atlanta, GA
.
37.
Booten
,
C.
,
Robertson
,
J.
,
Christensen
,
D.
,
Heaney
,
M.
,
Brown
,
D.
,
Norton
,
P.
, and
Smith
,
C.
,
2017
,
Residential Indoor Temperature Study
, NREL Report NREL/TP-5500-68019, National Renewable Energy Laboratory, https://www.nrel.gov/docs/fy17osti/68019.pdf
38.
DOE
,
2020
, Residential Prototype Building Models, Building Energy Codes Program, US Department of Energy, Energy Efficiency and Renewable Energy, Washington, DC, https://www.energycodes.gov/development/residential/iecc_models
39.
Roeva
,
O.
,
Fidanova
,
S.
,
Paprzycki
,
M.
,
2013
,
Influence of the Population Size on the Genetic Algorithm Performance in Case of Cultivation Process Modelling
, 2013 Federated Conference on Computer Science and Information System (FedCSIS)
,
Krakow, Poland
,
Sept. 8–11
, pp.
371
376
.
40.
El Maskaoui
,
Z.
,
2017
, “
Genetic Algorithm Parameters Effect on the Optimal Structural Design Search
,”
IOSR J. Mech. Civ. Eng.
,
14
, pp.
124
130
. 10.9790/1684-140305124130
41.
Kumar
,
A.
, and
Rangavittal
,
H. K.
,
2018
, “
Genetic Algorithm Parameter Effect on 3D Truss Optimization With Discrete Variable
,”
Adv. J. Grad. Res.
,
5
, pp.
61
70
. 10.21467/ajgr.5.1.61-70
42.
Ghoreishi
,
A. H.
, and
Ali
,
M. M.
,
2013
, “
Parametric Study of Thermal Mass Property of Concrete Buildings in US Climate Zones
,”
Archit. Sci. Rev.
,
56
, pp.
103
117
. 10.1080/00038628.2012.729310
43.
Reilly
,
A.
, and
Kinnane
,
O.
,
2017
, “
The Impact of Thermal Mass on Building Energy Consumption
,”
Appl. Energy
,
198
, pp.
108
121
. 10.1016/j.apenergy.2017.04.024
44.
Sharston
,
R.
, and
Murray
,
S.
,
2019
, “
The Combined Effects of Thermal Mass and Insulation on Energy Performance in Concrete Office Buildings
,”
Adv. Build. Energy Res.
,
0
, pp.
1
16
.
45.
Al-Sanea
,
S. A.
,
Zedan
,
M. F.
, and
Al-Hussain
,
S. N.
,
2012
, “
Effect of Thermal Mass on Performance of Insulated Building Walls and the Concept of Energy Savings Potential
,”
Appl. Energy
,
89
, pp.
430
442
. 10.1016/j.apenergy.2011.08.009
46.
Aste
,
N.
,
Angelotti
,
A.
, and
Buzzetti
,
M.
,
2009
, “
The Influence of the External Walls Thermal Inertia on the Energy Performance of Well Insulated Buildings
,”
Energy Build.
,
41
, pp.
1181
1187
. 10.1016/j.enbuild.2009.06.005
47.
Bond
,
D. E. M.
,
Clark
,
W. W.
, and
Kimber
,
M.
,
2013
, “
Configuring Wall Layers for Improved Insulation Performance
,”
Appl. Energy
,
112
, pp.
235
245
. 10.1016/j.apenergy.2013.06.024
48.
Algarni
,
S.
,
2019
, “
Potential for Cooling Load Reduction in Residential Buildings Using Cool Roofs in the Harsh Climate of Saudi Arabia
,”
Energy Environ.
,
30
, pp.
235
253
. 10.1177/0958305X18787340
49.
Hosseini
,
M.
, and
Akbari
,
H.
,
2016
, “
Effect of Cool Roofs on Commercial Buildings Energy Use in Cold Climates
,”
Energy Build.
,
114
, pp.
143
155
. 10.1016/j.enbuild.2015.05.050
50.
Macintyre
,
H. L.
, and
Heaviside
,
C.
,
2019
, “
Potential Benefits of Cool Roofs in Reducing Heat-Related Mortality During Heatwaves in a European City
,”
Environ. Int.
,
127
, pp.
430
441
. 10.1016/j.envint.2019.02.065
51.
Baniassadi
,
A.
,
Sailor
,
D. J.
, and
Ban-Weiss
,
G. A.
,
2019
, “
Potential Energy and Climate Benefits of Super-Cool Materials as a Rooftop Strategy
,”
Urban Clim.
,
29
, p.
100495
. 10.1016/j.uclim.2019.100495
52.
Gutiérrez
,
E.
,
González
,
J. E.
,
Bornstein
,
R.
,
Arend
,
M.
, and
Martilli
,
A.
,
2013
, “
A New Modeling Approach to Forecast Building Energy Demands During Extreme Heat Events in Complex Cities
,”
ASME J. Sol. Energy Eng.
,
135
(4), p.
040906
. 10.1115/1.4025510
53.
Brown
,
K. E.
,
Baniassadi
,
A.
,
Pham
,
J. V.
,
Sailor
,
D. J.
, and
Phelan
,
P. E.
,
2020
, “
Effects of Rooftop Photovoltaics on Building Cooling Demand and Sensible Heat Flux Into the Environment for an Installation on a White Roof
,”
ASME J. Eng. Sustain. Build. Cities
,
1
(
2
), p.
021001
. 10.1115/1.4046399
54.
Hu
,
J.
, and
Yu
,
X. B.
,
2019
, “
Adaptive Thermochromic Roof System: Assessment of Performance Under Different Climates
,”
Energy Build.
,
192
, pp.
1
14
. 10.1016/j.enbuild.2019.02.040
55.
Seifhashem
,
M.
,
Capra
,
B. R.
,
Milller
,
W.
, and
Bell
,
J.
,
2018
, “
The Potential for Cool Roofs to Improve the Energy Efficiency of Single Storey Warehouse-Type Retail Buildings in Australia: A Simulation Case Study
,”
Energy Build.
,
158
, pp.
1393
1403
. 10.1016/j.enbuild.2017.11.034
56.
Piselli
,
C.
,
Pisello
,
A. L.
,
Saffari
,
M.
,
de Gracia
,
A.
,
Cotana
,
F.
, and
Cabeza
,
L. F.
,
2019
, “
Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation With Varying Climate Conditions
,”
Energies
,
12
, p.
3354
. 10.3390/en12173354
57.
Testa
,
J.
, and
Krarti
,
M.
,
2017
, “
Evaluation of Energy Savings Potential of Variable Reflective Roofing Systems for US Buildings
,”
Sustain. Cities Soc.
,
31
, pp.
62
73
. 10.1016/j.scs.2017.01.016
58.
Testa
,
J.
, and
Krarti
,
M.
,
2017
, “
A Review of Benefits and Limitations of Static and Switchable Cool Roof Systems
,”
Renew. Sustain. Energy Rev.
,
77
, pp.
451
460
. 10.1016/j.rser.2017.04.030
You do not currently have access to this content.