Abstract

This paper investigates the impact of thermal interactions between heat exchangers integrated within building foundation piles to meet space heating and cooling needs of buildings. Specifically, a three-dimensional transient numerical model is developed to evaluate the thermal performance of the foundation piles. The model is used to estimate the temperature variations within the soil medium under various operation conditions of thermo-active foundation (TAF) systems. Then, a series of parametric analyses is carried out to evaluate the influence of design parameters of the piles on the performance of TAF systems, including the interactive effects between piles as well as the impact of these piles on the building slab heat transfer. Then, the parametric analysis results are utilized to develop simplified calculation methods to assess the thermal impacts of the geometric features for the piles on both the performance of TAF systems as well as the building slab heat losses and/or gains. The developed simplified calculation methods are suitable to develop design guidelines in order to enhance the performance of thermal piles to heat and cool buildings.

References

1.
EIA
,
2018
,
Recent Data: Energy Consumption Estimates by Sector
, United States EnergyInformation Administration, Washington, DC, http://www.eia.gov/consumption/, Accessed July 24, 2019.
2.
Krarti
,
M.
,
2010
,
Energy Audit of Building Systems: An Engineering Approach
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
3.
Gonzalez
,
J.
, and
Krarti
,
M.
, eds,
2017
,
Handbook of Integrated and Sustainable Buildings Equipment and Systems
,
ASME Press
,
New York, NY
, p.
500
.
4.
McCartney
,
J. S.
,
2015
, “Structural Performance of Thermo-Active Foundations,”
Thermo-Active Foundations for Sustainable Buildings, Monograph
,
M.
Krarti
, ed.,
ASME Press
,
New York, NY
, p.
150
.
5.
Kaltreider
,
C.
,
Krarti
,
M.
, and
McCartney
,
J.
,
2015
, “
Heat Transfer Analysis of Thermo-Active Foundations
,”
Energy Build.
,
86
(
1
), pp.
492
501
. 10.1016/j.enbuild.2014.09.063
6.
Kwag
,
B. C.
, and
Krarti
,
M.
,
2013
, “
Performance of Thermoactive Foundations for Commercial Buildings
,”
ASME Solar Energy Eng. J.
,
135
(
4
), p.
040907
. 10.1115/1.4025587
7.
Kwag
,
B. C.
, and
Krarti
,
M.
,
2014
, “
Development of a Response Factor Model for Thermo-Active Building Foundation
,”
Proceedings for ASME 2014 International Mechanical Engineering Congress and Exposition, Volume 6B
,
Montreal, Canada
,
Nov. 10–14
, Paper No. IMECE2014-36350.
8.
Krarti
,
M.
,
2015
,
Thermo-Active Foundations for Sustainable Buildings, Monograph
,
ASME Press
,
New York, NY
, p.
150
.
9.
Olgun
,
C. G.
,
Ozudogru
,
T. Y.
,
Abdelaziz
,
S. L.
, and
Senol
,
A.
,
2015
, “
Long-Term Performance of Heat Exchanger Piles
,”
Acta Geotech.
,
10
(
5
), pp.
553
569
. 10.1007/s11440-014-0334-z
10.
Brandl
,
H.
,
1998
, “
Energy Piles and Diaphragm Walls for Heat Transfer From and Into the Ground
,”
Deep Foundations on Bored and Auger Piles
,
W.
Haegeman
and
W. F.
Van Impe
, eds.,
Balkema, Rotterdam
,
Oct. 19–21
, University of Ghent, Belgium, pp.
37
60
.
11.
Anstett
,
M.
,
Hubbuch
,
M.
,
Laloui
,
L.
,
Matthey
,
B.
,
Morath
,
M.
,
Pahud
,
D.
,
Parriaux
,
A.
,
Rybach
,
L.
,
Schonbachler
,
M.
, and
Tacher
,
L.
,
2005
,
Utilisation de la Chaleur du sol par des Ouvrages de Foundation et de Soutenement en Beton, Guide Pour la Conception, la Realisation et la Maintenance
,
Swiss Society of Engineers and Architects
,
Documentation D
, Zurich, Switzerland, p.
190
.
12.
Phillips
,
A.
,
Raynor
,
D.
,
Pantelidou
,
H.
,
Gornali
,
D.
, and
Nicholson
,
D.
,
2010
,
Efficient Design of Piled Foundations for Low-Rise Housing-Design Guide
,
NHBC Foundation
,
Buckinghamshire, UK
.
13.
Laloui
,
L.
,
Nuth
,
M.
, and
Vulliet
,
L.
,
2006
, “
Experimental and Numerical Investigations of the Behaviour of a Heat Exchanger Pile
,”
Int. J. Numer. Anal. Methods Geomech.
,
30
(
8
), pp.
763
781
. 10.1002/nag.499
14.
Bourne-Webb
,
P.
,
Amatya
,
B.
,
Soga
,
K.
,
Amis
,
T.
,
Davidson
,
C.
, and
Payne
,
P.
,
2009
, “
Energy Pile Test at Lambeth College, London: Geotechnical and Thermodynamic Aspects of Pile Response to Heat Cycles
,”
Géotechnique
,
59
(
3
), pp.
237
248
. 10.1680/geot.2009.59.3.237
15.
Knellwolf
,
C.
,
Peron
,
H.
, and
Laloui
,
L.
,
2011
, “
Geotechnical Analysis of Heat Exchanger Piles
,”
J. Geotech. Geoenviron. Eng.
,
137
(
10
), pp.
890
902
. 10.1061/(ASCE)GT.1943-5606.0000513
16.
Wood
,
J. C.
,
Liu
,
H.
, and
Riffat
,
S. B.
,
2010
, “
An Investigation of the Heat Pump Performance and Ground Temperature of a Piled Foundation Heat Exchanger System for a Residential Building
,”
Energy
,
25
(
12
), pp.
4932
4940
. 10.1016/j.energy.2010.08.032
17.
Sutman
,
M.
,
Speranza
,
G.
,
Ferrari
,
A.
,
Larrey-Lassalle
,
P.
, and
Laloui
,
L.
,
2020
, “
Long-Term Performance and Life Cycle Assessment of Energy Piles in Three Different Climatic Conditions
,”
Renew. Energy
,
146
, pp.
1177
1191
. 10.1016/j.renene.2019.07.035
18.
Jensen-Page
,
L.
,
Loveridge
,
F.
, and
Narsilio
,
G. A.
,
2019
, “
Thermal Response Testing of Large Diameter Energy Piles
,”
Energies
,
12
(
14
), p.
2700
. 10.3390/en12142700
19.
Omer
,
A. M.
,
2008
, “
Ground-Source Heat Pumps Systems and Applications
,”
Renew. Sustain. Energy Rev.
,
12
(
2
), pp.
344
371
. 10.1016/j.rser.2006.10.003
20.
Brandl
,
H.
,
2006
, “
Energy Foundations and Other Thermo-Active Ground Structures
,”
Géotechnique
,
56
(
2
), pp.
81
122
. 10.1680/geot.2006.56.2.81
21.
Ooka
,
R.
,
Sekine
,
K.
,
Mutsumi
,
Y.
,
Yoshiro
,
S.
, and
SuckHo
,
H.
,
2007
,
Development of a Ground Source Heat Pump System With Ground Heat Exchanger Utilizing the Cast in Place Concrete Pile Foundations of a Building
,
EcoStock 2007
,
The Richard Stockton College of New Jersey
,
Stockton, NJ
.
22.
Lu
,
Q.
,
Narsilio
,
G. A.
,
Aditya
,
G. N.
, and
Johnston
,
I. W.
,
2017
, “
Economic Analysis of Vertical Ground Source Heat Pump Systems in Melbourne
,”
Energy
,
125
, pp.
107
117
. 10.1016/j.energy.2017.02.082
23.
Fadejev
,
J.
,
Simson
,
R.
,
Kurnitski
,
J.
, and
Haghighat
,
F.
,
2017
, “
A Review on Energy Piles Design, Sizing and Modelling
,”
Energy
,
122
, pp.
390
407
. 10.1016/j.energy.2017.01.097
24.
Bidarmaghz
,
A.
,
Narsilio
,
G. A.
,
Johnston
,
I. W.
, and
Colls
,
S.
,
2016
, “
The Importance of Surface Air Temperature Fluctuations on Long-Term Performance of Vertical Ground Heat Exchangers
,”
Geomech. Energy Environ.
,
6
, pp.
35
44
. 10.1016/j.gete.2016.02.003
25.
Huerta
,
A. L. E.
, and
Krarti
,
M.
,
2015
, “
Foundation Heat Transfer Analysis for Buildings With Thermal Piles
,”
Energy Convers. Manage.
,
89
, pp.
449
457
. 10.1016/j.enconman.2014.10.008
26.
Cui
,
Y.
, and
Zhu
,
J.
,
2018
, “
Year-round Performance Assessment of a Ground Source Heat Pump With Multiple Energy Piles
,”
Energy Build.
,
159
, pp.
509
524
. 10.1016/j.enbuild.2017.10.033
27.
Cui
,
Y.
, and
Zhu
,
J.
,
2017
, “
3D Transient Heat Transfer Numerical Analysis of Multiple Energy Piles
,”
Energy Build.
,
134
, pp.
129
142
. 10.1016/j.enbuild.2016.10.032
28.
Alberdi-Pagola
,
M.
,
2018
, “
Design and Performance of Energy Pile Foundations: Precast Quadratic Pile Heat Exchangers for Shallow Geothermal Energy Systems
,”
Ph.D. dissertation
,
Aalborg University
,
Denmark
.
29.
Alberdi-Pagola
,
M.
,
Poulsen
,
S. E.
,
Loveridge
,
F.
,
Madsen
,
S.
, and
Jensen
,
R. L.
,
2018
, “
Comparing Heat Flow Models for Interpretation of Precast Quadratic Pile Heat Exchanger Thermal Response Tests
,”
Energy
,
145
, pp.
721
733
. 10.1016/j.energy.2017.12.104
30.
Alberdi-Pagola
,
M.
,
Poulsen
,
S. E.
,
Jensen
,
L. J.
, and
Madsen
,
S.
,
2019
, “
Thermal Design Method for Multiple Precast Energy Piles
,”
Geothermics
,
78
, pp.
201
210
. 10.1016/j.geothermics.2018.12.007
31.
Ghasemi-Fare
,
O.
, and
Basu
,
P.
,
2016
, “
Predictive Assessment of Heat Exchange Performance of Geothermal Piles
,”
Renew. Energy
,
86
, pp.
1178
1196
. 10.1016/j.renene.2015.08.078
32.
Sania
,
A. K.
,
Singh
,
R. M.
,
Amis
,
T.
, and
Cavarretta
,
I.
,
2019
, “
A Review on the Performance of Geothermal Energy Pile Foundation, Its Design Process and Applications
,”
Renew. Sustain. Energy Rev.
,
106
, pp.
54
78
. 10.1016/j.rser.2019.02.008
33.
Eskilson
,
P.
,
1987
, “
Thermal Analysis of Heat Extraction Boreholes
,”
Ph.D. dissertation
,
University of Lund
,
Sweden
.
34.
Hellstrom
,
G.
,
1991
,
Ground Heat Storage. Thermal Analysis of Duct Storage Systems: Part I Theory
,
University of Lund, Department of Mathematical Physics
,
Lund, Sweden
.
35.
Bauer
,
D.
,
Heidemann
,
W.
,
Muller-Steinhagen
,
H.
, and
Diersch
,
H. J. G.
,
2011
, “
Thermal Resistance and Capacity Models for Borehole Heat Exchangers
,”
Int. J. Energy Res.
,
35
(
4
), pp.
312
320
. 10.1002/er.1689
36.
Lamarche
,
L.
,
2011
, “
Analytical G-Function for Inclined Boreholes in Ground-Source Heat Pump Systems
,”
Geothermics
,
40
(
4
), pp.
241
249
. 10.1016/j.geothermics.2011.07.006
37.
Cui
,
P.
,
Li
,
X.
,
Man
,
Y.
, and
Fang
,
Z.
,
2011
, “
Heat Transfer Analysis of Pile Geothermal Heat Exchangers With Spiral Coils
,”
Appl. Energy
,
88
(
11
), pp.
4113
4119
. 10.1016/j.apenergy.2011.03.045
38.
Cecinato
,
F.
, and
Loveridge
,
F. A.
,
2015
, “
Influences on the Thermal Efficiency of Energy Piles
,”
Energy
,
82
, pp.
1021
1033
. 10.1016/j.energy.2015.02.001
39.
Zarrella
,
A.
,
De Carli
,
M.
, and
Galgaro
,
A.
,
2013
, “
Thermal Performance of Two Types of Energy Foundation Pile: Helical Pipe and Triple U-Tube
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
301
310
. 10.1016/j.applthermaleng.2013.08.011
40.
Zarrella
,
A.
,
Emmi
,
G.
, and
De Carli
,
M.
,
2015
, “
Analysis of Operating Modes of a Ground Source Heat Pump With Short Helical Heat Exchangers
,”
Energy Convers. Manage.
,
97
, pp.
351
361
. 10.1016/j.enconman.2015.03.059
41.
Kwag
,
B. C.
, and
Krarti
,
M.
,
2016
, “
Evaluation of Thermo-Active Foundations for Heating and Cooling Residential Buildings
,”
ASME J. Solar Energy Eng.
,
138
(
6
), p.
061010
. 10.1115/1.4034806
42.
Kwag
,
B. C.
, and
Krarti
,
M.
,
2018
, “
Development of Design Guidelines for Thermo-Active Foundations
,”
Indoor Built Environ. J.
,
27
(
6
), pp.
805
817
. 10.1177/1420326X17690018
43.
Yavuzturk
,
C.
, and
Spitler
,
J. D.
,
1999
, “
A Short Time Step Response Factor Model for Vertical Ground Loop Heat Exchangers
,”
ASHRAE Trans.
,
105
(
2
), pp.
465
474
.
44.
Yavuzturk
,
C.
,
Spitler
,
J. D.
, and
Rees
,
S. J.
,
1999
, “
A Transient Two-Dimensional Finite Volume Model for the Simulation of Vertical U-Tube Ground Heat Exchangers
,”
ASHRAE Trans.
,
105
(
2
), pp.
475
485
.
45.
Krarti
,
M.
,
1999
, “Ground-Coupled Heat Transfer,”
Advances in Solar Energy
,
D.
Yogi Goswami
, ed.,
ASES Publication
,
Boulder, CO
, p.
90
.
46.
Krarti
,
M.
,
Nicoulin
,
V.
,
Claridge
,
D.
, and
Kreider
,
J.
,
1995
, “
Comparison of Energy Predictions of Three Ground-Coupling Heat Transfer Calculation Methods
,”
ASHRAE Transactions
,
101
, pt. 1, pp.
158
172
.
47.
Krarti
,
M.
,
Claridge
,
D. E.
, and
Kreider
,
J.
,
1988
, “
ITPE Method Applications to Time-Varying Two-Dimensional Ground-Coupling Problems
,”
Int. J. Heat Mass Transfer
,
31
(
9
), pp.
1899
1911
. 10.1016/0017-9310(88)90203-7
48.
Rouissi
,
K.
,
Krarti
,
M.
, and
McCartney
,
J. S.
,
2011
, “
Analysis of Thermo-Active Foundation Using U-Tube Heat Exchangers
,”
ASME Solar Energy Eng. J.
,
134
(
2
), pp.
154
161
. 10.1115/es2011-54524
49.
Murphy
,
K. D.
, and
McCartney
,
J. S.
,
2015
, “
Seasonal Response of Energy Foundations During Building Operation
,”
Geotech. Geol. Eng.
,
33
(
2
), pp.
343
356
. 10.1007/s10706-014-9802-3
50.
Abdelaziz
,
S. L.
,
Olgun
,
C. G.
, and
Martin
,
J. R.
,
2015
, “
Equivalent Energy Wave for Long-Term Analysis of Ground Coupled Heat Exchangers
,”
Geothermics
,
53
, pp.
67
84
. 10.1016/j.geothermics.2014.04.006
51.
ASHRAE
,
2017
,
Handbook of Fundamentals
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
,
Atlanta, GA
.
You do not currently have access to this content.