Abstract

This study investigates the performance of two solar air heater designs, S1-SAH and S2-SAH, through experimental analysis of temperature, energy gain and loss, efficiency, and Thermal-Hydraulic Performance Parameter (THPP) across mass flow rates ranging from 0.013 to 0.061 kg/s in hot climatic conditions of R.E.C Banda. The S2-SAH consistently outperformed the conventional S1-SAH, achieving a maximum energy efficiency of 79.3% at 0.051 kg/s and a peak exergy efficiency of 4.5% at 0.013 kg/s. Additionally, the highest THPP of 2.0 was recorded at 0.051 kg/s. The results highlight the superior performance and enhanced efficiency of the S2-SAH, showcasing the effectiveness of its design for improved heat transfer.

References

1.
Singh
,
S.
,
Chander
,
S.
, and
Saini
,
J. S.
,
2012
, “
Exergy Based Analysis of Solar air Heater Having Discrete V-Down rib Roughness on Absorber Plate
,”
Energy
,
37
(
1
), pp.
749
758
.
2.
Singh
,
S.
,
Singh
,
B.
,
Hans
,
V. S.
, and
Gill
,
R. S.
,
2015
, “
CFD (Computational Fluid Dynamics) Investigation on Nusselt Number and Friction Factor of Solar air Heater Duct Roughened With non-Uniform Cross-Section Transverse rib
,”
Energy
,
84
, pp.
509
517
.
3.
Lanjewar
,
A.
,
Bhagoria
,
J. L.
, and
Sarviya
,
R. M.
,
2011
, “
Experimental Study of Augmented Heat Transfer and Friction in Solar air Heater With Different Orientations of W-Rib Roughness
,”
Exp. Therm. Fluid. Sci.
,
35
(
6
), pp.
986
995
.
4.
Kumar
,
R.
, and
Goel
,
V.
,
2021
, “
Unconventional Solar air Heater With Triangular Flow-Passage: A CFD Based Comparative Performance Assessment of Different Cross-Sectional rib-Roughnesses
,”
Renew. Energy
,
172
, pp.
1267
1278
.
5.
Sahu
,
M. K.
, and
Prasad
,
R. K.
,
2016
, “
Exergy Based Performance Evaluation of Solar air Heater With arc-Shaped Wire Roughened Absorber Plate
,”
Renew. Energy
,
96
(
Part A
), pp.
233
243
.
6.
Altfeld
,
K.
,
Leiner
,
W.
, and
Fiebig
,
M.
,
1988
, “
Second law Optimization of Flat-Plate Solar air Heaters Part I: The Concept of net Exergy Flow and the Modeling of Solar air Heaters
,”
Sol. Energy
,
41
(
2
), pp.
127
132
.
7.
Gupta
,
M. K.
, and
Kaushik
,
S. C.
,
2009
, “
Performance Evaluation of Solar air Heater for Various Artificial Roughness Geometries Based on Energy, Effective and Exergy Efficiencies
,”
Renew. Energy
,
34
(
3
), pp.
465
476
.
8.
Kazaz
,
O.
,
Karimi
,
N.
, and
Paul
,
M. C.
,
2024
, “
Radiation and Nanoparticle Interaction for Enhanced Light Absorption and Heat Conversion
,”
J. Mol. Liq.
,
411
, p.
125702
.
9.
Kazaz
,
O.
,
Karimi
,
N.
,
Kumar
,
S.
,
Falcone
,
G.
, and
Paul
,
M. C.
,
2024
, “
Thermally Enhanced Nanocomposite Phase Change Material Slurry for Solar-Thermal Energy Storage
,”
J. Energy Storage
,
78
, p.
110110
.
10.
Kazaz
,
O.
,
Karimi
,
N.
, and
Paul
,
M. C.
,
2024
, “
Optically Functional bio-Based Phase Change Material Nanocapsules for Highly Efficient Conversion of Sunlight to Heat and Thermal Storage
,”
Energy
,
305
, p.
132290
.
11.
Kazaz
,
O.
,
Ferraro
,
R.
,
Tassieri
,
M.
,
Kumar
,
S.
,
Falcone
,
G.
,
Karimi
,
N.
, and
Paul
,
M. C.
,
2023
, “
Sensible Heat Thermal Energy Storage Performance of Mono and Blended Nanofluids in a Free Convective-Radiation Inclined System
,”
Case Stud. Therm. Eng.
,
51
, p.
103562
.
12.
Kurtbas
,
I.
, and
Durmuş
,
A.
,
2004
, “
Efficiency and Exergy Analysis of a new Solar air Heater
,”
Renew. Energy
,
29
(
9
), pp.
1489
1501
.
13.
Öztürk
,
H. H.
, and
Demirel
,
Y.
,
2004
, “
Exergy-Based Performance Analysis of Packed-bed Solar air Heaters
,”
Int. J. Energy Res.
,
28
(
5
), pp.
423
432
.
14.
Alta
,
D.
,
Bilgili
,
E.
,
Ertekin
,
C.
, and
Yaldiz
,
O.
,
2010
, “
Experimental Investigation of Three Different Solar air Heaters: Energy and Exergy Analyses
,”
Appl. Energy
,
87
(
10
), pp.
2953
2973
.
15.
Akpinar
,
E. K.
, and
Koçyiĝit
,
F.
,
2010
, “
Energy and Exergy Analysis of a new Flat-Plate Solar air Heater Having Different Obstacles on Absorber Plates
,”
Appl. Energy
,
87
(
11
), pp.
3438
3450
.
16.
Lalji
,
M. K.
,
Sarviya
,
R. M.
, and
Bhagoria
,
J. L.
,
2012
, “
Exergy Evaluation of Packed bed Solar air Heater
,”
Renew. Sustain. Energy Rev.
,
16
(
8
), pp.
6262
6267
.
17.
Bayrak
,
F.
,
Oztop
,
H. F.
, and
Hepbasli
,
A.
,
2013
, “
Energy and Exergy Analyses of Porous Baffles Inserted Solar air Heaters for Building Applications
,”
Energy Build.
,
57
, pp.
338
345
.
18.
Benli
,
H.
,
2013
, “
Experimentally Derived Efficiency and Exergy Analysis of a new Solar air Heater Having Different Surface Shapes
,”
Renew. Energy
,
50
, pp.
58
67
.
19.
Bouadila
,
S.
,
Lazaar
,
M.
,
Skouri
,
S.
,
Kooli
,
S.
, and
Farhat
,
A.
,
2014
, “
Energy and Exergy Analysis of a new Solar air Heater With Latent Storage Energy
,”
Int. J. Hydrogen Energy
,
39
(
27
), pp.
15266
15274
.
20.
Yadav
,
A. S.
, and
Bhagoria
,
J. L.
,
2014
, “
A Numerical Investigation of Square Sectioned Transverse rib Roughened Solar air Heater
,”
Int. J. Therm. Sci.
,
79
, pp.
111
131
.
21.
Jin
,
D.
,
Zhang
,
M.
,
Wang
,
P.
, and
Xu
,
S.
,
2015
, “
Numerical Investigation of Heat Transfer and Fluid Flow in a Solar air Heater Duct With Multi V-Shaped Ribs on the Absorber Plate
,”
Energy
,
89
, pp.
178
190
.
22.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Shalaby
,
S. M.
, and
Zayed
,
M. E.
,
2016
, “
Investigation of the Thermal Performances of Flat, Finned, and v-Corrugated Plate Solar Air Heaters
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051004
.
23.
Acır
,
A.
,
Canlı
,
M. E.
,
Ata
,
İ
, and
Çakıroğlu
,
R.
,
2017
, “
Parametric Optimization of Energy and Exergy Analyses of a Novel Solar air Heater With Grey Relational Analysis
,”
Appl. Therm. Eng.
,
122
, pp.
330
338
.
24.
Matheswaran
,
M. M.
,
Arjunan
,
T. V.
, and
Somasundaram
,
D.
,
2018
, “
Analytical Investigation of Solar air Heater With jet Impingement Using Energy and Exergy Analysis
,”
Sol. Energy
,
161
, pp.
25
37
.
25.
Abuşka
,
M.
,
2018
, “
Energy and Exergy Analysis of Solar air Heater Having new Design Absorber Plate With Conical Surface
,”
Appl. Therm. Eng.
,
131
, pp.
115
124
.
26.
Ghiami
,
A.
, and
Ghiami
,
S.
,
2018
, “
Comparative Study Based on Energy and Exergy Analyses of a Baffled Solar air Heater With Latent Storage Collector
,”
Appl. Therm. Eng.
,
133
, pp.
797
808
.
27.
Cuzminschi
,
M.
,
Gherasim
,
R.
,
Girleanu
,
V.
,
Zubarev
,
A.
, and
Stamatin
,
I.
,
2018
, “
Innovative Thermo-Solar air Heater
,”
Energy Build.
,
158
, pp.
964
970
.
28.
Kumar
,
A.
, and
Layek
,
A.
,
2019
, “
Energetic and Exergetic Performance Evaluation of Solar air Heater With Twisted rib Roughness on Absorber Plate
,”
J. Cleaner Prod.
,
232
, pp.
617
628
.
29.
Jin
,
D.
,
Quan
,
S.
,
Zuo
,
J.
, and
Xu
,
S.
,
2019
, “
Numerical Investigation of Heat Transfer Enhancement in a Solar air Heater Roughened by Multiple V-Shaped Ribs
,”
Renew. Energy
,
134
, pp.
78
88
.
30.
Farhan
,
A. A.
,
Obaid
,
Z. A. H.
, and
Hussien
,
S. Q.
,
2020
, “
Analysis of Exergetic Performance for a Solar air Heater With Metal Foam Fins
,”
Heat Transfer
,
49
(
5
), pp.
3190
3204
.
31.
Singh
,
S.
,
2020
, “
Experimental and Numerical Investigations of a Single and Double Pass Porous Serpentine Wavy Wiremesh Packed bed Solar air Heater
,”
Renew. Energy
,
145
, pp.
1361
1387
.
32.
Luan
,
N. T.
, and
Phu
,
N. M.
,
2020
, “
Thermohydraulic Correlations and Exergy Analysis of a Solar air Heater Duct With Inclined Baffles
,”
Case Stud. Therm. Eng.
,
21
, p.
100672
.
33.
Sari
,
A.
,
Sadi
,
M.
,
Shafiei Sabet
,
G.
,
Mohammadiun
,
M.
, and
Mohammadiun
,
H.
,
2021
, “
Experimental Analysis and Exergetic Assessment of the Solar air Collector With Delta Winglet Vortex Generators and Baffles
,”
J. Therm. Anal. Calorim.
,
145
(
3
), pp.
867
885
.
34.
Kumar
,
D.
,
Mahanta
,
P.
, and
Kalita
,
P.
,
2021
, “
Performance Analysis of a Solar air Heater Modified With zig-zag Shaped Copper Tubes Using Energy-Exergy Methodology
,”
Sustain. Energy Technol. Assessm.
,
46
, p.
101222
.
35.
Saravanakumar
,
P. T.
,
Somasundaram
,
D.
, and
Matheswaran
,
M. M.
,
2020
, “
Exergetic Investigation and Optimization of arc Shaped rib Roughened Solar air Heater Integrated With Fins and Baffles
,”
Appl. Therm. Eng.
,
175
, p.
115316
.
36.
Abo-Elfadl
,
S.
,
S. Yousef
,
M.
,
El-Dosoky
,
M. F.
, and
Hassan
,
H.
,
2021
, “
Energy, Exergy, and Economic Analysis of Tubular Solar air Heater With Porous Material: An Experimental Study
,”
Appl. Therm. Eng.
,
196
, p.
117294
.
37.
Jayranaiwachira
,
N.
,
Promvonge
,
P.
,
Thianpong
,
C.
, and
Skullong
,
S.
,
2022
, “
Thermal-Hydraulic Performance of Solar Receiver Duct With Inclined Punched-Ribs and Grooves
,”
Case Stud. Therm. Eng.
,
39
, p.
102437
.
38.
Promvonge
,
P.
, and
Skullong
,
S.
,
2022
, “
Thermal-Hydraulic Performance Enhancement of Solar Receiver Channel by Flapped V-Baffles
,”
Chem. Eng. Res. Des.
,
182
, pp.
87
97
.
39.
Chaudhri
,
K.
,
Bhagoria
,
J. L.
, and
Kumar
,
V.
,
2022
, “
Transverse Wedge-Shaped rib Roughened Solar air Heater (SAH)—Exergy Based Experimental Investigation
,”
Renew. Energy
,
184
, pp.
1150
1164
.
40.
Alam
,
T.
,
Siddiqui
,
M. I. H.
,
Alshehri
,
H.
,
Ali
,
M. A.
,
Blecich
,
P.
, and
Saurabh
,
K.
,
2022
, “
Exergy-Based Thermo-Hydraulic Performance of Roughened Absorber in Solar Air Heater Duct
,”
Appl. Sci.
,
12
(
3
), p.
1696
.
41.
Jain
,
S. K.
,
Misra
,
R.
, and
Agrawal
,
G. D.
,
2022
, “
Experimental Investigation and Optimizing the Parameters of a Solar Air Heater Having Broken Arc-Shaped Ribs Using Hybrid Entropy-VIKOR Technique
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061013
.
42.
Nidhul
,
K.
,
Yadav
,
A. K.
,
Anish
,
S.
, and
Arunachala
,
U. C.
,
2022
, “
Thermo-Hydraulic and Exergetic Performance of a Cost-Effective Solar air Heater: CFD and Experimental Study
,”
Renew. Energy
,
184
, pp.
627
641
.
43.
Gogada
,
S.
,
Roy
,
S.
,
Gupta
,
A.
,
Das
,
B.
, and
Ali Ehyaei
,
M.
,
2022
, “
Energy and Exergy Analysis of Solar air Heater With Trapezoidal Ribs Based Absorber: A Comparative Analysis
,”
Energy Sci. Eng.
,
11
(
2
), pp.
585
605
.
44.
Gürel
,
A. E.
,
Yıldız
,
G.
,
Ergün
,
A.
, and
Ceylan
,
İ.
,
2022
, “
Exergetic, Economic and Environmental Analysis of Temperature Controlled Solar air Heater System
,”
Clean. Eng. Technol.
,
6
, p.
100369
.
45.
Suresh Bhuvad
,
S.
,
Husain Rizvi
,
I.
, and
Azad
,
R.
,
2023
, “
Apex-up Discrete-arc rib Roughened Solar air Heater-Energy and Exergy Based Experimental Study
,”
Sol. Energy
,
258
, pp.
361
371
.
46.
Shankar
,
R.
,
Kumar
,
R.
,
Pandey
,
A. K.
, and
Thakur
,
D. S.
,
2024
, “
Experimental Analysis of a Solar Air Heater Featuring Multiple Spiral-Shaped Semi-Conical Ribs
,”
ASME J. Sol. Energy Eng.
,
146
(
3
), p.
031005
.
47.
Lal Sharma
,
S.
, and
Debbarma
,
A.
,
2024
, “
Numerical Investigation of Reversed Flow Solar Air Heater Roughened With Circular- and Triangular-Shaped Tubes
,”
ASME J. Sol. Energy Eng.
,
146
(
2
), p.
021003
.
48.
Hassan
,
A.
,
Nikbakht
,
A. M.
,
Fawzia
,
S.
,
Yarlagadda
,
P.
, and
Karim
,
A.
,
2024
, “
A Comprehensive Review of the Thermohydraulic Improvement Potentials in Solar Air Heaters Through an Energy and Exergy Analysis
,”
Energies
,
17
(
7
), p.
1526
.
49.
Arunkumar
,
H. S.
,
Kumar
,
S.
, and
Vasudeva Karanth
,
K.
,
2024
, “
Energy Exergy and Economic Analysis of a Multiple Inlet Solar air Heater for Augmented Thermohydraulic Performance
,”
Appl. Therm. Eng.
,
246
, p.
122981
.
50.
Alrashidi
,
A.
,
Altohamy
,
A. A.
,
Abdelrahman
,
M. A.
, and
Elsemary
,
I. M. M.
,
2024
, “
Energy and Exergy Experimental Analysis for Innovative Finned Plate Solar air Heater
,”
Case Stud. Therm. Eng.
,
59
, p.
104570
.
51.
Shankar
,
R.
,
Kumar
,
R.
,
Pandey
,
A. K.
, and
Thakur
,
D. S.
,
2024
, “
A Comprehensive Review of Rectangular Duct Solar air Heaters Featuring Artificial Roughness
,”
Clean Energy
,
8
(
5
), pp.
186
217
.
52.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2020
,
Heat and Mass Transfer: Fundamentals and Applications
,
McGraw-Hill Global Education Holding, LLC
,
New York
, p.
1057
.
53.
ASHRAE
,
1977
,
Methods of Testing to Determine the Thermal Performance of Solar Collectors
,
ASHRAE
,
New York
. Standard No. 93-1977.
54.
Singh
,
Y.
, and
Pal
,
N.
,
2020
, “
Obstacles and Comparative Analysis in the Advancement of Photovoltaic Power Stations in India
,”
Sustain. Comput.: Inform. Syst.
,
25
, p.
100372
.
55.
Esen
,
H.
,
2008
, “
Experimental Energy and Exergy Analysis of a Double-Flow Solar air Heater Having Different Obstacles on Absorber Plates
,”
Build. Environ.
,
43
(
6
), pp.
1046
1054
.
56.
Garg
,
H. P.
, and
Prakash
,
J.
,
2000
,
Solar Energy: Fundamentals and Applications
,
McGraw-Hill Education Pvt Limited
,
India
, p.
434
.
57.
John
,
D.
,
1980
,
Solar Engineering for Thermal Process
,
John Wiley & Sons
,
New York
.
58.
Ansari
,
M.
, and
Bazargan
,
M.
,
2018
, “
Optimization of Flat Plate Solar air Heaters With Ribbed Surfaces
,”
Appl. Therm. Eng.
,
136
, pp.
356
363
.
59.
Webb
,
R. L.
,
Eckert
,
E. R. G.
, and
Goldstein
,
R. J.
,
1971
, “
Heat Transfer and Friction in Tubes With Repeated-rib Roughness
,”
Int. J. Heat Mass Transfer
,
14
(
4
), pp.
601
617
.
60.
Svirezhev
,
Y. M.
,
Steinborn
,
W. H.
, and
Pomaz
,
V. L.
,
2003
, “
Exergy of Solar Radiation: Global Scale
,”
Ecol. Modell.
,
169
(
2–3
), pp.
339
346
.
61.
Petela
,
R.
,
1964
, “
Exergy of Heat Radiation
,”
ASME J. Heat Transfer
,
86
(
2
), pp.
187
192
.
62.
Ghritlahre
,
H. K.
, and
Prasad
,
R. K.
,
2018
, “
Exergetic Performance Prediction of Solar air Heater Using MLP, GRNN and RBF Models of Artificial Neural Network Technique
,”
J. Environ. Manage.
,
223
, pp.
566
575
.
63.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid. Sci.
,
1
(
1
), pp.
3
17
.
64.
(Info) Climate of Bundelkhand Region
,
2024
,
Temperature Pattern in Bundelkhand
,
Bundelkhand Research Portal
,
Bundelkhand Uttar Pradesh
.
65.
Madadi Avargani
,
V.
,
Zendehboudi
,
S.
,
Rahimi
,
A.
, and
Soltani
,
S.
,
2022
, “
Comprehensive Energy, Exergy, Enviro-Exergy, and Thermo-Hydraulic Performance Assessment of a Flat Plate Solar air Heater With Different Obstacles
,”
Appl. Therm. Eng.
,
203
, p.
117907
.
66.
Muthukumaran
,
J.
, and
Senthil
,
R.
,
2022
, “
Experimental Performance of a Solar air Heater Using Straight and Spiral Absorber Tubes With Thermal Energy Storage
,”
J. Energy Storage
,
45
, p.
103796
.
67.
Hassan
,
H.
,
Osman
,
O. O.
,
Abdelmoez
,
M. N.
, and
abo-Elfadl
,
S.
,
2023
, “
Energy and Exergy Evaluation of new Design Nabla Shaped Tubular Solar air Heater (∇ TSAH): Experimental Investigation
,”
Energy
,
276
, p.
127451
.
68.
Pandey
,
R.
,
2024
, “
Critical Analysis of the Energy and Exergy Performance of an air Heater Duct With Perforated 60-Degree V-Down Baffles Affixed to the Heated Surface
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
, p.
09544089241234617
.
69.
Pachori
,
H.
,
Choudhary
,
T.
,
Sheorey
,
T.
,
Kumar Shukla
,
A.
, and
Verma
,
V.
,
2024
, “
A Novel Energy, Exergy and Sustainability Analysis of a Decentralized Solar air Heater Integrated With V-Shaped Artificial Roughness for Solar Thermal Application
,”
Sustain. Energy Technol. Assessm.
,
66
, p.
103816
.
You do not currently have access to this content.