Abstract

This paper proposes an investigation of a novel design of receiver absorber tube (circular–trapezoidal shaped) for parabolic trough concentrator (PTC) system aiming at catching a part of the lost (reflected) solar rays due to effects related to the incidence angle deviation and thus improving the PTC's thermal performance. Although they are always present in PTC, the effects of the deviation angle are often not considered in the literature. These effects are considered here in view of presenting a better and more useful focal area, the optimal circular–trapezoidal absorber tube shape is determined according to the maximal limit of the deviation angle that allows catching the maximum amount of solar rays. The corresponding model is established considering it as a two-dimensional problem and the derived deviation angle coefficient is compared to that obtained for a traditional circular-shaped tube. Moreover, the energy balance model is adapted to simulate the thermal efficiency of the considered tubes as a function of the deviation angle with some assumptions. The obtained results prove that from a deviation angle value of 0.1 deg, the gain in efficiency becomes more significant; it can reach 5% and even be higher for a deviation angle value of 0.5 deg. Finally, comsol multiphysics software package was used to determine the pressure drops, temperature, and velocity field distributions, considering a deviation angle value of 0.2 deg. The results confirm that the proposed tube absorbs more heat than the traditional one.

References

1.
Du
,
E.
,
Zhang
,
N.
,
Hodge
,
B.
,
Wang
,
Q.
,
Lu
,
Z.
,
Kang
,
C.
,
Kroposki
,
B.
, and
Xia
,
Q.
,
2019
, “
Operation of a High Renewable Penetrated Power System With csp Plants: A Look-Ahead Stochastic Unit Commitment Model
,”
IEEE Trans. Power Syst.
,
34
(
1
), pp.
140
151
.
2.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2019
, “
Alternative Designs of Parabolic Trough Solar Collectors
,”
Prog. Energy Combust. Sci.
,
71
, pp.
81
117
.
3.
Núnez Bootello
,
J. P.
,
Schramm
,
M.
,
Silva Pérez
,
M.
, and
Doblaré Castellano
,
M.
,
2017
, “
Parametric Trough Solar Collector With Commercial Evacuated Receiver: Performance Comparison at Plant Level
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041014
.
4.
Chaabane
,
M.
,
Mhiri
,
H.
, and
Bournot
,
P.
,
2020
, “
Thermal Performance Evaluation and Enhancement of a Parabolic Trough Collector
,”
J. Renew. Sustain. Energy
,
12
(
4
), pp.
043
702
.
5.
Altwijri
,
F.
,
Sherif
,
S.
, and
Alghamdi
,
A.
,
2023
, “
Performance Analysis of a Solar Cascaded Absorption Cooling System Using a Performance-Enhanced Parabolic Trough Collector
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
061010
.
6.
Altwijri
,
F.
,
Sherif
,
S.
, and
Alshwairekh
,
A. M.
,
2023
, “
Effect of Different Arrangements of v-Shaped Ribs on the Performance of an Optically Enhanced Parabolic Trough Solar Collector
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031012
.
7.
Allouhi
,
A.
,
Benzakour Amine
,
M.
,
Saidur
,
R.
,
Kousksou
,
T.
, and
Jamil
,
A.
,
2018
, “
Energy and Exergy Analyses of a Parabolic Trough Collector Operated With Nanofluids for Medium and High Temperature Applications
,”
Energy Convers. Manage.
,
155
, pp.
201
217
.
8.
Coccia
,
G.
,
Di Nicola
,
G.
,
Colla
,
L.
,
Fedele
,
L.
, and
Scattolini
,
M.
,
2016
, “
Adoption of Nanofluids in Low Enthalpy Parabolic Trough Solar Collectors: Numerical Simulation of the Yearly Yield
,”
Energy Convers. Manage.
,
118
, pp.
306
319
.
9.
Kasaeian
,
A.
,
Daneshazarian
,
R.
,
Mahian
,
O.
,
Kolsi
,
L.
,
Chamkha
,
A. J.
,
Wongwises
,
S.
, and
Pop
,
I.
,
2017
, “
Nanofluid Flow and Heat Transfer in Porous Media: A Review of the Latest Developments
,”
Int. J. Heat Mass Transf.
,
107
, pp.
778
791
.
10.
Hafez
,
A.
,
Attia
,
A.
,
Eltwab
,
H.
,
ElKousy
,
A.
,
Afifi
,
A.
,
AbdElhamid
,
A.
,
AbdElqader
,
A.
, et al
,
2018
, “
Design Analysis of Solar Parabolic Trough Thermal Collectors
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
1215
1260
.
11.
Fuqiang
,
W.
,
Zhexiang
,
T.
,
Xiangtao
,
G.
,
Jianyu
,
T.
,
Huaizhi
,
H.
, and
Bingxi
,
L.
,
2016
, “
Heat Transfer Performance Enhancement and Thermal Strain Restrain of Tube Receiver for Parabolic Trough Solar Collector by Using Asymmetric Outward Convex Corrugated Tube
,”
Energy
,
114
, pp.
275
292
.
12.
Gong
,
X.
,
Wang
,
F.
,
Wang
,
H.
,
Tan
,
J.
,
Lai
,
Q.
, and
Han
,
H.
,
2017
, “
Heat Transfer Enhancement Analysis of Tube Receiver for Parabolic Trough Solar Collector With (Pin Fin Arrays Inserting
,”
Sol. Energy
,
144
, pp.
185
202
.
13.
Valizade
,
M.
,
Heyhat
,
M.
, and
Maerefat
,
M.
,
2020
, “
Experimental Study of the Thermal Behavior of Direct Absorption Parabolic Trough Collector by Applying Copper Metal Foam as Volumetric Solar Absorption
,”
Renew. Energy
,
145
, pp.
261
269
.
14.
Bitam
,
E. W.
,
Demagh
,
Y.
,
Hachicha
,
A. A.
,
Benmoussa
,
H.
, and
Kabar
,
Y.
,
2018
, “
Numerical Investigation of a Novel Sinusoidal Tube Receiver for Parabolic Trough Technology
,”
Appl. Energy
,
218
, pp.
494
510
.
15.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging Diverging Absorber Tube
,”
Renew. Energy
,
94
, pp.
213
222
.
16.
Huang
,
Z.
,
Li
,
Z.-Y.
,
Yu
,
G.-L.
, and
Tao
,
W.-Q.
,
2017
, “
Numerical Investigations on Fully-Developed Mixed Turbulent Convection in Dimpled Parabolic Trough Receiver Tubes
,”
Appl. Therm. Eng.
,
114
, pp.
1287
1299
.
17.
Chen
,
F.
,
Li
,
M.
,
Zhang
,
P.
, and
Luo
,
X.
,
2015
, “
Thermal Performance of a Novel Linear Cavity Absorber for Parabolic Trough Solar Concentrator
,”
Energy Convers. Manage.
,
90
, pp.
292
299
.
18.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Analytical Expression of Parabolic Trough Solar Collector Performance
,”
Designs
,
2
(
1
), p.
9
.
19.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Mahoney
,
A. R.
,
Mancini
,
T. R.
,
Matthews
,
C. W.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
,
Test Results: Segs ls-2 Solar Collector
,
Technical Report, Sandia National Labs
,
Albuquerque, NM
.
20.
Forristall
,
R.
,
2003
,
Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,
Technical Report, National Renewable Energy Lab.
,
Golden, CO
.
21.
Sallaberry
,
F.
,
Valenzuela
,
L.
, and
Palacin
,
L. G.
,
2017
, “
On-Site Parabolic-Trough Collector Testing in Solar Thermal Power Plants: Experimental Validation of a New Approach Developed for the IEC 62862-3-2 Standard
,”
Sol. Energy
,
155
, pp.
398
409
.
22.
Djenane
,
M. S.
,
Hadji
,
S.
, and
Touhami
,
O.
,
2019
, “
Effect of Deviation Angle on the Parabolic Trough Solar Collector Performances
,”
Proceedings of the 2019 International Conference on Advanced Electrical Engineering (ICAEE)
,
Algiers, Algeria
,
Nov. 19–21
, pp.
1
6
.
23.
Simonović
,
T.
,
Stamenić
,
M.
,
Tanasić
,
N.
, and
Trninić
,
M.
,
2016
, “
Effect of Small Deviation of Incident Angle on Thermal Performance of Parabolic-Trough Solar Collector
,”
Proceedings of the 2016 4th International Symposium on Environmental Friendly Energies and Applications (EFEA)
,
Belgrade, Serbia
,
Sept. 14–16
, pp.
1
4
.
24.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes
,
John Wiley & Sons Inc.
,
Hoboken, NJ
.
25.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Daniil
,
I.
,
2016
, “
The Use of Gas Working Fluids in Parabolic Trough Collectors—An Energetic and Exergetic Analysis
,”
Appl. Therm. Eng.
,
109
, pp.
1
14
.
26.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Assessment of the Thermal Enhancement Methods in Parabolic Trough Collectors
,”
Int. J. Energy Environ. Eng.
,
9
(
1
), pp.
59
70
.
You do not currently have access to this content.