Abstract

Synthesis of solar thermochemical hydrogen (STCH) production redox materials with engineered structures, for example, replica foams, can enable efficient heat and mass transport and are critical for scaled-up systems. Prior work has motivated the use of lanthanum strontium manganese (LSM)-type perovskites as foamed STCH materials, but the effect of their morphology on bulk and kinetic behavior has not been reported. In this work, replica and direct foamed samples of La0.65Sr0.35MnO3-δ (LSM35) were fabricated and compared to synthesized powders and dense monoliths, and similarly synthesized CeO2-δ (ceria) foams, regarding their specific reaction rates and bulk oxygen capacity/H2 yields. Changes in oxygen capacity (Δδ) and reaction rates were measured between 1200 °C and 1400 °C by using fixed ratios of steam and hydrogen during both reduction and oxidation steps, allowing for analysis under practical high conversion conditions. Results suggest bulk behavior and reaction rates of the foamed LSM materials are comparable to their powder analogues. Differences in reaction rates were observed only when replica foamed samples were subjected to rapid laser heating (emulating conditions expected in solar furnaces), which is expected but has not been demonstrated at such a small scale. Foamed samples were further subjected to 50 redox cycles at 1400 °C to evaluate their stability. Results show no statistically significant decrease in hydrogen production for any of the foamed samples, but the direct foamed samples became brittle with time. Together, these results demonstrate the viability of replica foamed LSM perovskites for integration in scaled-up STCH systems.

References

1.
Zhang
,
H. L.
,
Baeyens
,
J.
,
Degrève
,
J.
, and
Cacères
,
G.
,
2013
, “
Concentrated Solar Power Plants: Review and Design Methodology
,”
Renew. Sust. Energ. Rev.
,
22
, pp.
466
481
.
2.
Steinfeld
,
A.
,
2005
, “
Solar Thermochemical Production of Hydrogen––A Review
,”
Sol. Energy
,
78
(
5
), pp.
603
615
.
3.
Carrillo
,
A. J.
,
González-Aguilar
,
J.
,
Romero
,
M.
, and
Coronado
,
J. M.
,
2019
, “
Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials
,”
Chem. Rev.
,
119
(
7
), pp.
4777
4816
.
4.
Mogensen
,
M.
,
2000
, “
Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria
,”
Solid State Ionics
,
129
(
1-4
), pp.
63
94
.
5.
Dry
,
M. E.
,
2002
, “
The Fischer–Tropsch Process: 1950–2000
,”
Catal. Today
,
71
(
3–4
), pp.
227
241
.
6.
Ackermann
,
S.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2014
, “
Diffusion of Oxygen in Ceria at Elevated Temperatures and Its Application to H2O/CO2 Splitting Thermochemical Redox Cycles
,”
J. Phys. Chem. C
,
118
(
10
), pp.
5216
5225
.
7.
Panlener
,
R. J.
,
Blumenthal
,
R. N.
, and
Garnier
,
J. E.
,
1975
, “
Thermodynamic Study of Nonstoichiometric Cerium Dioxide
,”
J. Phys. Chem. Solids
,
36
(
11
), pp.
1213
1222
.
8.
Chueh
,
W. C.
, and
Haile
,
S. M.
,
2010
, “
A Thermochemical Study of Ceria: Exploiting an Old Material for New Modes of Energy Conversion and CO2 Mitigation
,”
Philos. Trans. R. Soc A: Math. Phys. Eng. Sci.
,
368
(
1923
), pp.
3269
3294
.
9.
Takacs
,
M.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2015
, “
Oxygen Nonstoichiometry and Thermodynamic Characterization of Zr Doped Ceria in the 1573–1773K Temperature Range
,”
Phys. Chem. Chem. Phys.
,
17
(
12
), pp.
7813
7822
.
10.
Zinkevich
,
M.
,
Djurovic
,
D.
, and
Aldinger
,
F.
,
2006
, “
Thermodynamic Modelling of the Cerium–Oxygen System
,”
Solid State Ionics
,
177
(
11-12
), pp.
989
1001
.
11.
Marxer
,
D.
,
Furler
,
P.
,
Takacs
,
M.
, and
Steinfeld
,
A.
,
2017
, “
Solar Thermochemical Splitting of CO2 Into Separate Streams of CO and O2 With High Selectivity, Stability, Conversion, and Efficiency
,”
Energy Environ. Sci.
,
10
(
5
), pp.
1142
1149
.
12.
Schäppi
,
R.
, et al
,
2022
, “
Drop-in Fuels From Sunlight and Air
,”
Nature
,
601
(
7891
), pp.
63
68
.
13.
Zoller
,
S.
,
2020
, “
A 50 kW Solar Thermochemical Reactor for Syngas Production Utilizing Porous Ceria Structures
,”
Doctoral Thesis
,
ETH Zurich
.
14.
Carrillo
,
R. J.
, and
Scheffe
,
J. R.
,
2019
, “
Beyond Ceria: Theoretical Investigation of Isothermal and Near Isothermal Redox Cycling of Perovskites for Solar Thermochemical Fuel Production
,”
Energy Fuels
,
33
(
12
), pp.
12871
12884
.
15.
Kubicek
,
M.
,
Bork
,
A. H.
, and
Rupp
,
J. L. M.
,
2017
, “
Perovskite Oxides—A Review on a Versatile Material Class for Solar-to-Fuel Conversion Processes
,”
J. Mater. Chem. A
,
5
(
24
), pp.
11983
12000
.
16.
Ezbiri
,
M.
,
Takacs
,
M.
,
Theiler
,
D.
,
Michalsky
,
R.
, and
Steinfeld
,
A.
,
2017
, “
Tunable Thermodynamic Activity of LaxSr1−xMnyAl1−yO3−δ (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) Perovskites for Solar Thermochemical Fuel Synthesis
,”
J. Mater. Chem. A
,
5
(
8
), pp.
4172
4182
. 1010.1039/C6TA06644E
17.
Takacs
,
M.
,
Hoes
,
M.
,
Caduff
,
M.
,
Cooper
,
T.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2016
, “
Oxygen Nonstoichiometry, Defect Equilibria, and Thermodynamic Characterization of LaMnO3 Perovskites With Ca/Sr A-Site and Al B-Site Doping
,”
Acta Mater.
,
103
, pp.
700
710
.
18.
Scheffe
,
J. R.
,
Weibel
,
D.
, and
Steinfeld
,
A.
,
2013
, “
Lanthanum–Strontium–Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
27
(
8
), pp.
4250
4257
.
19.
Mcdaniel
,
A. H.
,
Miller
,
E. C.
,
Arifin
,
D.
,
Ambrosini
,
A.
,
Coker
,
E. N.
,
O'Hayre
,
R.
,
Chueh
,
W. C.
, and
Tong
,
J.
,
2013
, “
Sr- and Mn-Doped LaAlO3−δ for Solar Thermochemical H2 and CO Production
,”
Energy Environ. Sci.
,
6
(
8
), p.
2424
.
20.
Lee
,
K.
,
McCord
,
D. C.
,
Carrillo
,
R. J.
,
Guyll
,
B.
, and
Scheffe
,
J. R.
,
2020
, “
Improved Performance and Efficiency of Lanthanum–Strontium–Manganese Perovskites Undergoing Isothermal Redox Cycling Under Controlled pH2O/pH2
,”
Energy Fuels
,
34
(
12
), pp.
16918
16926
.
21.
Hathaway
,
B. J.
,
Bala Chandran
,
R.
,
Gladen
,
A. C.
,
Chase
,
T. R.
, and
Davidson
,
J. H.
,
2016
, “
Demonstration of a Solar Reactor for Carbon Dioxide Splitting via the Isothermal Ceria Redox Cycle and Practical Implications
,”
Energy Fuels
,
30
(
8
), pp.
6654
6661
.
22.
Furler
,
P.
,
Scheffe
,
J.
,
Marxer
,
D.
,
Gorbar
,
M.
,
Bonk
,
A.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2014
, “
Thermochemical CO2 Splitting via Redox Cycling of Ceria Reticulated Foam Structures With Dual-Scale Porosities
,”
Phys. Chem. Chem. Phys.
,
16
(
22
), pp.
10503
10511
.
23.
Marxer
,
D.
,
Furler
,
P.
,
Scheffe
,
J.
,
Geerlings
,
H.
,
Falter
,
C.
,
Batteiger
,
V.
,
Sizmann
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Demonstration of the Entire Production Chain to Renewable Kerosene via Solar Thermochemical Splitting of H2O and CO2
,”
Energy Fuels
,
29
(
5
), pp.
3241
3250
.
24.
Furler
,
P.
,
Scheffe
,
J.
,
Gorbar
,
M.
,
Moes
,
L.
,
Vogt
,
U.
, and
Steinfeld
,
A.
,
2012
, “
Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System
,”
Energy Fuels
,
26
(
11
), pp.
7051
7059
.
25.
Haeussler
,
A.
,
Abanades
,
S.
,
Julbe
,
A.
,
Jouannaux
,
J.
, and
Cartoixa
,
B.
,
2020
, “
Two-Step CO2 and H2O Splitting Using Perovskite-Coated Ceria Foam for Enhanced Green Fuel Production in a Porous Volumetric Solar Reactor
,”
J. CO2 Util.
,
41
, p.
101257
.
26.
Parvanian
,
A. M.
,
Salimijazi
,
H. R.
,
Fathi
,
M.
, and
Saadatfar
,
M.
,
2018
, “
Synthesis and Thermal Shock Evaluation of Porous SiC Ceramic Foams for Solar Thermal Applications
,”
J. Am. Ceram. Soc.
,
102
(
4
), pp.
2009
2020
.
27.
Parvanian
,
A. M.
,
Salimijazi
,
H.
,
Shabaninejad
,
M.
,
Troitzsch
,
U.
,
Kreider
,
P.
,
Lipinski
,
W.
, and
Saadatfar
,
M.
,
2020
, “
Thermochemical CO2 Splitting Performance of Perovskite Coated Porous Ceramics
,”
RSC Adv.
,
10
(
39
), pp.
23049
23057
.
28.
Pein
,
M.
,
Matzel
,
L.
,
Oliveira
,
L.
,
Alkan
,
G.
,
Francke
,
A.
,
Mechnich
,
P.
,
Agrafiotis
,
C.
,
Roeb
,
M.
, and
Sattler
,
C.
,
2022
, “
Reticulated Porous Perovskite Structures for Thermochemical Solar Energy Storage
,”
Adv. Energy Mater.
,
12
(
10
), p.
2102882
.
29.
Gager
,
E.
,
Frye
,
M.
,
McCord
,
D.
,
Scheffe
,
J.
, and
Nino
,
J. C.
,
2022
, “
Reticulated Porous Lanthanum Strontium Manganite Structures for Solar Thermochemical Hydrogen Production
,”
Int. J. Hydrogen Energy
,
47
(
73
), pp.
31152
31164
.
30.
Carrillo
,
R. J.
,
Warren
,
K. J.
, and
Scheffe
,
J. R.
,
2019
, “
Experimental Framework for Evaluation of the Thermodynamic and Kinetic Parameters of Metal-Oxides for Solar Thermochemical Fuel Production
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021007
.
31.
Smith
,
J. M.
,
Van Ness
,
H. C.
,
Abbott
,
M. M.
, and
Swihart
,
M. T.
,
1949
,
Introduction to Chemical Engineering Thermodynamics
,
McGraw-Hill, Singapore
.
32.
Chase
,
M. W.
, and
Organization
,
N. I. S.
,
1998
,
NIST-JANAF Thermochemical Tables
,
American Chemical Society
,
Washington, DC
.
33.
McDaniel
,
A. H.
,
Allendorf
,
M. D.
,
Scheffe
,
J. R.
, and
Weimer
,
A. W.
,
2013
, “
Kinetics and Mechanism of Solar-Thermochemical H2 Production by Oxidation of a Cobalt Ferrite-Zirconia Composite
,”
Energy Environ. Sci.
,
6
(
3
), pp.
963
973
.
34.
Arifin
,
D.
,
Aston
,
V. J.
,
Liang
,
X.
,
McDaniel
,
A. H.
, and
Weimer
,
A. W.
,
2012
, “
CoFe2O4 on a Porous Al2O3 Nanostructure for Solar Thermochemical CO2 Splitting
,”
Energy Environ. Sci.
,
5
(
11
), pp.
9438
9443
.
35.
Mizusaki
,
J.
,
Tagawa
,
H.
,
Naraya
,
K.
, and
Sasamoto
,
T.
,
1991
, “
Nonstoichiometry and Thermochemical Stability of the Perovskite-Type La1-xSrxMnO3-δ
,”
Solid State Ionics
,
49
, pp.
111
118
.
36.
Sanders
,
M. D.
,
Bergeson-Keller
,
A. M.
,
Coker
,
E. N.
, and
O’Hayre
,
R. P.
,
2022
, “
A Thermogravimetric Temperature-Programmed Thermal Redox Protocol for Rapid Screening of Metal Oxides for Solar Thermochemical Hydrogen Production
,”
Front. Energ Res
,
10
, p.
343
.
37.
Hurst
J. E.
, Jr
, and
Keith Harrison
,
B.
,
1992
, “
Estimation of Liquid and Solid Heat Capacities Using a Modified Kopp’s Rule
,”
Chem. Eng. Commun.
,
112
(
1
), pp.
21
30
.
38.
Riess
,
I.
,
Ricken
,
M.
, and
No
,
J.
,
1985
, “
On the Specific Heat of Nonstoichiometric Ceria
,”
J. Solid State Chem.
,
57
(
3
), pp.
314
322
.
39.
Jacob
,
K. T.
, and
Attaluri
,
M.
,
2003
, “
Refinement of Thermodynamic Data for LaMnO3
,”
J. Mater. Chem.
,
13
(
4
), pp.
934
942
.
40.
Szewczyk
,
A.
,
Gutowska
,
M.
, and
Dabrowski
,
B.
,
2005
, “
Specific Heat and Phase Diagram of Heavily Doped
,”
Phys. Rev. B
,
72
(
22
), p.
224429
.
41.
Chueh
,
W.
, et al
,
2010
, “
High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria
,”
Science
,
330
(
6012
), pp.
1797
1801
.
42.
Furler
,
P.
,
Scheffe
,
J. R.
, and
Steinfeld
,
A.
,
2012
, “
Syngas Production by Simultaneous Splitting of H2O and CO2 via Ceria Redox Reactions in a High-Temperature Solar Reactor
,”
Energy Environ. Sci.
,
5
(
3
), pp.
6098
6103
.
43.
Warren
,
K. J.
,
Carrillo
,
R. J.
,
Greek
,
B.
,
Hill
,
C. M.
, and
Scheffe
,
J. R.
,
2020
, “
Solar Reactor Demonstration of Efficient and Selective Syngas Production via Chemical-Looping Dry Reforming of Methane Over Ceria
,”
Energ. Technol.
,
8
(
6
), p.
2000053
.
You do not currently have access to this content.