Abstract

The integration of solar-powered pumping systems (SPPS) into agriculture and potable and wastewater sectors becomes mandatory to provide water in remote regions. The broad use of SPPS with classical maximum power point tracking controllers (MPPTCs) showed moderated voltage and power response deterioration. Therefore, the necessity for overcoming these performance degradations and pre-testing of MPPTCs is not an option for the proper operation of such systems. This paper presents a new simple, cost-effective real-time hardware-in-the-loop (RT-HIL) framework to enhance the dynamic performance of SPPS. To accomplish this study, a real pumping station was modeled and equipped with MPPTCs through matlab/simulink. Besides, a practical SPPS was implemented to evaluate the effectiveness of the proposed RT-HIL on system performance. The practical SPPS includes designing a DC-DC buck converter circuit equipped with metaheuristic optimization-based real-time MPPTCs. The tuned PI/FOPI-based MPPTCs are adopted in this work to gain the maximum power from the PV generator under measured real environmental conditions. The proposed real-time MPPTCs techniques are perturb and observe, and incremental conductance (IC) with I, PI, and fractional-order PI (FOPI) controllers. The simulation and the experimental results prove the superiority of the developed real-time FOPI-based MPPTCs in enhancing the system performance in terms of the gained power, module output current, pump flowrate, and pump efficiency. The paper’s novelty lies behind the relatively low-cost real-time execution of PI/FOPI-based MPPT techniques on SPPS. This work was simulated using matlab/simulink in conjunction with Arduino-based RT-HIL and the experimental validation was implemented at the National Water Research Center (NWRC) in Egypt.

References

1.
Moyo
,
R. T.
,
Tabakov
,
P. Y.
, and
Moyo
,
S.
,
2021
, “
Design and Modeling of the ANFIS-Based MPPT Controller for a Solar Photovoltaic System
,”
ASME J. Sol. Energy Eng.
,
143
(
4
), p.
041002
.
2.
Mohamed
,
M. A.
,
2015
, “
Solar Irradiance Estimation of Photovoltaic Module Based on Thevenin Equivalent Circuit Model
,”
Int. J. Renew. Energy Res.
,
5
(
4
), pp.
971
972
. .
3.
Başoğlu
,
M. E.
, and
Çakır
,
B.
,
2016
, “
Comparisons of MPPT Performances of Isolated and Non-Isolated DC–DC Converters by Using a New Approach
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1100
1113
.
4.
Kumar
,
N.
,
Sharma
,
S. P.
,
Sinha
,
U. K.
, and
Nayak
,
Y. K.
,
2016
, “
Prediction of Solar Energy Based on Intelligent ANN Modeling
,”
Int. J. Renew. Energy Res.
,
6
(
1
), pp.
183
188
. .
5.
Kashyapm
,
M.
,
Chanana
,
S.
, and
Arya
,
J. S.
,
2013
, “
Solar Powered PMDC Motor Drive
,”
Proceedings of the Conference on Advances in Communication and Control Systems
,
April
, pp.
18
22
.
6.
Oi
,
A.
,
Anwari
,
M.
, and
Taufik
,
M.
,
2009
, “
Modeling and Simulation of Photovoltaic Water Pumping System
,”
2009 Third Asia International Conference on Modelling & Simulation
,
Bundang, Indonesia
,
May
, pp.
497
502
.
7.
Yahyaoui
,
I.
,
Atieh
,
A.
,
Tadeo
,
F.
, and
Tina
,
M. G.
,
2017
, “
Energetic and Economic Sensitivity Analysis for Photovoltaic Water Pumping Systems
,”
Sol. Energy
,
144
, pp.
376
391
.
8.
Gul
,
E.
,
Baldinelli
,
G.
,
Bartocci
,
P.
,
Bianchi
,
F.
,
Piergiovanni
,
D.
,
Cotana
,
F.
, and
Wang
,
J.
,
2022
, “
A Techno-Economic Analysis of a Solar PV and DC Battery Storage System for a Community Energy Sharing
,”
Energy
,
244
, p.
123191
.
9.
Odeh
,
I.
,
Yohanis
,
Y. G.
, and
Norton
,
B.
,
2006
, “
Economic Viability of Photovoltaic Water Pumping Systems
,”
Sol. Energy
,
80
(
7
), pp.
850
860
.
10.
Suehrcke
,
H.
,
Appelbaum
,
J.
, and
Breshef
,
B.
,
1997
, “
Modelling a Permanent Magnet DC Motor/Centrifugal Pump Assembly in a Photovoltaic Energy System
,”
Sol. Energy
,
59
(
1–3
), pp.
37
42
.
11.
Patel
,
H.
, and
Agarwal
,
V.
,
2008
, “
Maximum Power Point Tracking Scheme for PV Systems Operating Under Partially Shaded Conditions
,”
IEEE Trans. Ind. Electron.
,
55
(
4
), pp.
1689
1698
.
12.
Aouchiche
,
N.
,
Aitcheikh
,
M. S.
,
Becherif
,
M.
, and
Ebrahim
,
M. A.
,
2018
, “
AI-Based Global MPPT for Partial Shaded Grid Connected PV Plant Via MFO Approach
,”
Sol. Energy
,
171
, pp.
593
603
.
13.
de Oliveira
,
P. H. T. M.
, and
Revoredo
,
T. C.
,
2022
, “
Modeling and Maximum Power Tracking of a Solar-Wind Microgeneration System
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021003
.
14.
Ebrahim
,
M. A.
,
Osama
,
A.
,
Kotb
,
K. M.
, and
Bendary
,
F.
,
2019
, “
Whale Inspired Algorithm Based MPPT Controllers for Grid-Connected Solar Photovoltaic System
,”
Energy Proc.
,
162
, pp.
77
86
.
15.
Hua
,
C.
,
Lin
,
J.
, and
Shen
,
C.
,
1998
, “
Implementation of a DSP-Controlled Photovoltaic System With Peak Power Tracking
,”
IEEE Trans. Ind. Electron.
,
45
(
1
), pp.
99
107
.
16.
Femia
,
N.
,
Petrone
,
G.
,
Spagnuolo
,
G.
, and
Vitelli
,
M.
,
2005
, “
Optimization of Perturb and Observe Maximum Power Point Tracking Method
,”
IEEE Trans. Power Electron.
,
20
(
4
), pp.
963
973
.
17.
Azevedo
,
G. M.
,
Cavalcanti
,
M. C.
,
Oliveira
,
K. C.
,
Neves
,
F. A.
, and
Lins
,
Z. D.
,
2009
, “
Comparative Evaluation of Maximum Power Point Tracking Methods for Photovoltaic Systems
,”
ASME J. Sol. Energy Eng.
,
131
(
3
), p.
031006
.
18.
Selvan
,
S.
,
Nair
,
P.
, and
Umayal
,
U.
,
2016
, “
A Review on Photo Voltaic MPPT Algorithms
,”
Int. J. Electr. Comput. Eng. (IJECE)
,
6
(
2
), pp.
567
582
.
19.
Soualmia
,
A.
, and
Chenni
,
R.
,
2016
, “
A Survey of Maximum Peak Power Tracking Techniques Used in Photovoltaic Power Systems
,”
2016 Future Technologies Conference (FTC)
,
San Francisco, CA
,
December
, pp.
430
443
.
20.
Ali
,
A. N.
,
Saied
,
M. H.
,
Mostafa
,
M. Z.
, and
Abdel- Moneim
,
T. M.
,
2012
, “
A Survey of Maximum PPT Techniques of PV Systems
,”
2012 IEEE Energytech
,
Cleveland, OH
,
May
, pp.
1
17
.
21.
Hadjaissa
,
A.
,
Ait cheikh
,
S. M.
,
Ameur
,
K.
, and
Essounbouli
,
N.
,
2016
, “
A Ga-Based Optimization of a Fuzzy-Based MPPT Controller for a Photovoltaic Pumping System, Case Study for Laghouat, Algeria
,”
IFAC-PapersOnLine
,
49
(
12
), pp.
692
697
.
22.
Pathak
,
P. K.
,
Yadav
,
A. K.
, and
Alvi
,
P. A.
,
2020
, “
Advanced Solar MPPT Techniques Under Uniform and Non-Uniform Irradiance: A Comprehensive Review
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
040801
.
23.
Al-Dhaifallah
,
M.
,
Nassef
,
A. M.
,
Rezk
,
H.
, and
Nisar
,
K. S.
,
2018
, “
Optimal Parameter Design of Fractional Order Control Based INC-MPPT for PV System
,”
Sol. Energy
,
159
, pp.
650
664
.
24.
Fawzy El-Khatib
,
M.
,
Shaaban
,
S.
, and
Abu El-Sebah
,
M. I.
,
2017
, “
A Proposed Advanced Maximum Power Point Tracking Control for a Photovoltaic-Solar Pump System
,”
Sol. Energy
,
158
, pp.
321
331
.
25.
Manoharan
,
P.
,
Subramaniam
,
U.
,
Babu
,
T. S.
,
Padmanaban
,
S.
,
Holm-Nielsen
,
J. B.
,
Mitolo
,
M.
, and
Ravichandran
,
S.
,
2021
, “
Improved Perturb and Observation Maximum Power Point Tracking Technique for Solar Photovoltaic Power Generation Systems
,”
IEEE Syst. J.
,
15
(
2
), pp.
3024
3035
.
26.
Krishnan
G. S.
,
Kinattingal
,
S.
,
Simon
,
S. P.
, and
Nayak
,
P. S. R.
,
2020
, “
MPPT in PV Systems Using Ant Colony Optimisation With Dwindling Population
,”
IET Renew. Power Generation
,
14
(
7
), pp.
1105
1112
.
27.
Singh
,
B.
, and
Mishra
,
A. K.
,
2019
, “
Performance Analysis of a Solar-Powered Water Pumping Using Improved Sido Buck–Boost Converter
,”
IET Power Electron.
,
12
(
11
), pp.
2904
2911
.
28.
Fares
,
M. A.
,
Atik
,
L.
,
Bachir
,
G.
, and
Aillerie
,
M.
,
2017
, “
Photovoltaic Panels Characterization and Experimental Testing
,”
Energy Proc.
,
119
, pp.
945
952
.
29.
Gavhane
,
P. S.
,
Krishnamurthy
,
S.
,
Dixit
,
R.
,
Ram
,
J. P.
, and
Rajasekar
,
N.
,
2017
, “
El-PSO Based MPPT for Solar PV Under Partial Shaded Condition
,”
Energy Proc.
,
117
, pp.
1047
1053
.
30.
Duran
,
E.
,
Piliougine
,
M.
,
Sidrach-de-Cardona
,
M.
,
Galan
,
J.
, and
Andujar
,
J. M.
,
2008
, “
Different Methods to Obtain the I–V Curve of PV Modules: A Review
,”
2008 33rd IEEE Photovoltaic Specialists Conference
,
San Diego, CA
,
May
, pp.
1
6
.
31.
Khatib
,
T.
,
Direya
,
R.
, and
Said
,
A.
,
2021
, “
An Improved Method for Extracting Photovoltaic Module I–V Characteristic Curve Using Hybrid Learning Machine System
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
051006
.
32.
Willoughby
,
A. A.
,
Omotosho
,
T. V.
, and
Aizebeokhai
,
A. P.
,
2014
, “
A Simple Resistive Load I-V Curve Tracer for Monitoring Photovoltaic Module Characteristics
,”
2014 5th International Renewable Energy Congress (IREC)
,
Hammamet, Tunisia
,
March
, pp.
1
6
.
33.
Naresh
,
B.
,
Prasad
,
K. R.
, and
Madhu
,
P.
,
2011
, “
Analysis of DC Solar Water Pump and Generalized Photovoltaic Model Using Matlab/Simulink
,”
UACEE Int. J. Adv. Electron. Electr. Eng.
,
1
(
1
), pp.
19
24
.
34.
Anto
,
E. K.
,
Asumadu
,
J. A.
, and
Okyere
,
P. Y.
,
2016
, “
PID Control for Improving P&O-MPPT Performance of a Grid-Connected Solar PV System With Ziegler-Nichols Tuning Method
,”
2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)
,
Hefei, China
,
June
, pp.
1847
1852
.
You do not currently have access to this content.