Abstract

The solar flux incident on a volumetric receiver is inherently unsteady, resulting in high thermal stresses, fatigue failures, and reduced component life. The knowledge of transient response characteristics of a porous volumetric receiver used in concentrating solar technologies is cardinal for its reliable and safe working. The dynamic controlling of the solar-to-thermal conversion process is also possible with the prior prediction of the output variations. The present study aims to investigate the transient behavior of a porous volumetric receiver subjected to flux variations approximations occurring in real working scenarios with the help of a coupled transient model. The solid and fluid temperature fields, output fluid temperature, and pressure drop variations are determined for transient flux conditions during start-up, shut-down, clear sky, and cloud passage. The results are used to analyze the thermal response of the receiver during various operating conditions. In addition, the effects of structural parameters of the porous absorber are also investigated. The results indicate that the receiver transient performance is comparatively more affected by the variation in porosity than in pore size for all conditions. Smaller porosities and pore sizes show slower thermal response to transient fluctuations and less temperature changes during cloud passage. Conversely, higher values help in the faster restoration of the steady-state output conditions without dynamic control.

References

1.
Lund
,
H.
,
2007
, “
Renewable Energy Strategies for Sustainable Development
,”
Energy
,
32
(
6
), pp.
912
919
.
2.
Kannan
,
N.
, and
Vakeesan
,
D.
,
2016
, “
Solar Energy for Future World:—A Review
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
1092
1105
.
3.
He
,
Y.-L.
,
Qiu
,
Y.
,
Wang
,
K.
,
Yuan
,
F.
,
Wang
,
W.-Q.
,
Li
,
M.-J.
, and
Guo
,
J.-Q.
,
2020
, “
Perspective of Concentrating Solar Power
,”
Energy
,
198
, p.
117373
.
4.
Majidi
,
M.
,
Behbahaninia
,
A.
,
Amidpour
,
M.
, and
Sadati
,
S. H.
,
2021
, “
Thermoeconomic Optimization of a Novel High-Efficiency Combined-Cycle Hybridization With a Solar Power Tower System
,”
Energy Convers. Manage.
,
244
, p.
114461
.
5.
Luo
,
Y.
,
Lu
,
T.
, and
Du
,
X.
,
2018
, “
Novel Optimization Design Strategy for Solar Power Tower Plants
,”
Energy Convers. Manage.
,
177
, pp.
682
692
.
6.
Ho
,
C. K.
, and
Iverson
,
B. D.
,
2014
, “
Review of High-Temperature Central Receiver Designs for Concentrating Solar Power
,”
Renewable Sustainable Energy Rev.
,
29
(
1
), pp.
835
846
.
7.
He
,
Y. L.
,
Wang
,
K.
,
Qiu
,
Y.
,
Du
,
B. C.
,
Liang
,
Q.
, and
Du
,
S.
,
2019
, “
Review of the Solar Flux Distribution in Concentrated Solar Power: Non-Uniform Features, Challenges, and Solutions
,”
Appl. Therm. Eng.
,
149
, pp.
448
474
.
8.
Ávila-Marín
,
A. L.
,
2011
, “
Volumetric Receivers in Solar Thermal Power Plants With Central Receiver System Technology: A Review
,”
Sol. Energy
,
85
(
5
), pp.
891
910
.
9.
Capuano
,
R.
,
Fend
,
T.
,
Schwarzbözl
,
P.
,
Smirnova
,
O.
,
Stadler
,
H.
,
Hoffschmidt
,
B.
, and
Pitz-Paal
,
R.
,
2016
, “
Numerical Models of Advanced Ceramic Absorbers for Volumetric Solar Receivers
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
656
665
.
10.
Ali
,
M.
,
Rady
,
M.
,
Attia
,
M. A. A.
, and
Ewais
,
E. M. M.
,
2020
, “
Consistent Coupled Optical and Thermal Analysis of Volumetric Solar Receivers With Honeycomb Absorbers
,”
Renewable Energy
,
145
, pp.
1849
1861
.
11.
Nakakura
,
M.
,
Bellan
,
S.
,
Matsubara
,
K.
, and
Kodama
,
T.
,
2018
, “
Conjugate Radiation-Convection-Conduction Simulation of Volumetric Solar Receivers With Cut-Back Inlets
,”
Sol. Energy
,
170
, pp.
606
617
.
12.
Nakakura
,
M.
,
Matsubara
,
K.
,
Bellan
,
S.
, and
Kodama
,
T.
,
2020
, “
Direct Simulation of a Volumetric Solar Receiver With Different Cell Sizes at High Outlet Temperatures (1,000–1,500 °C)
,”
Renewable Energy
,
146
, pp.
1143
1152
.
13.
Xu
,
C.
,
Song
,
Z.
,
Chen
,
L. D.
, and
Zhen
,
Y.
,
2011
, “
Numerical Investigation on Porous Media Heat Transfer in a Solar Tower Receiver
,”
Renewable Energy
,
36
(
3
), pp.
1138
1144
.
14.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Coupled Radiation and Flow Modeling in Ceramic Foam Volumetric Solar Air Receivers
,”
Sol. Energy
,
85
(
9
), pp.
2374
2385
.
15.
Barreto
,
G.
,
Canhoto
,
P.
, and
Collares-Pereira
,
M.
,
2018
, “
Three-Dimensional Modelling and Analysis of Solar Radiation Absorption in Porous Volumetric Receivers
,”
Appl. Energy
,
215
, pp.
602
614
.
16.
Barreto
,
G.
,
Canhoto
,
P.
, and
Collares-Pereira
,
M.
,
2020
, “
Parametric Analysis and Optimisation of Porous Volumetric Solar Receivers Made of Open-Cell SiC Ceramic Foam
,”
Energy
,
200
, p.
117476
.
17.
Roldán
,
M. I.
,
Smirnova
,
O.
,
Fend
,
T.
,
Casas
,
J. L.
, and
Zarza
,
E.
,
2014
, “
Thermal Analysis and Design of a Volumetric Solar Absorber Depending on the Porosity
,”
Renewable Energy
,
62
, pp.
116
128
.
18.
Du
,
S.
,
Xia
,
T.
,
He
,
Y. L.
,
Li
,
Z. Y.
,
Li
,
D.
, and
Xie
,
X. Q.
,
2020
, “
Experiment and Optimization Study on the Radial Graded Porous Volumetric Solar Receiver Matching Non-Uniform Solar Flux Distribution
,”
Appl. Energy
,
275
(
May
), p.
115343
.
19.
Laporte-Azcué
,
M.
,
González-Gómez
,
P. A.
,
Rodríguez-Sánchez
,
M. R.
, and
Santana
,
D.
,
2022
, “
A Procedure to Predict Solar Receiver Damage During Transient Conditions
,”
Renewable Sustainable Energy Rev.
,
154
, p.
111905
.
20.
Soo Too
,
Y. C.
,
García
,
J.
,
Padilla
,
R. V.
,
Kim
,
J. S.
, and
Sanjuan
,
M.
,
2019
, “
A Transient Optical-Thermal Model With Dynamic Matrix Controller for Solar Central Receivers
,”
Appl. Therm. Eng.
,
154
, pp.
686
698
.
21.
Xu
,
L.
,
Stein
,
W.
,
Kim
,
J. S.
,
Too
,
Y. C. S.
,
Guo
,
M.
, and
Wang
,
Z.
,
2018
, “
Transient Numerical Model for the Thermal Performance of the Solar Receiver
,”
Appl. Therm. Eng.
,
141
, pp.
1035
1047
.
22.
Ren
,
Y.
,
Qi
,
H.
,
Shi
,
J.
,
Chen
,
Q.
,
Wang
,
Y.
, and
Ruan
,
L.
,
2017
, “
Thermal Performance Characteristics of Porous Media Receiver Exposed to Concentrated Solar Radiation
,”
J. Energy Eng.
,
143
(
5
), p.
04017013
.
23.
Reddy
,
K. S.
, and
Nataraj
,
S.
,
2019
, “
Thermal Analysis of Porous Volumetric Receivers of Concentrated Solar Dish and Tower Systems
,”
Renewable Energy
,
132
, pp.
786
797
.
24.
Wu
,
Z.
, and
Wang
,
Z.
,
2013
, “
Fully Coupled Transient Modeling of Ceramic Foam Volumetric Solar Air Receiver
,”
Sol. Energy
,
89
, pp.
122
133
.
25.
Fuqiang
,
W.
,
Zhennan
,
G.
,
Jianyu
,
T.
,
Lanxin
,
M.
,
Zhenyu
,
Y.
, and
Heping
,
T.
,
2016
, “
Transient Thermal Performance Response Characteristics of Porous-Medium Receiver Heated by Multi-dish Concentrator
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
36
41
.
26.
Ribeiro
,
R. R.
, and
de Lemos
,
M. J. S.
,
2020
, “
Transient Behavior and Thermal Efficiency of Volumetric Heat Receivers
,”
Int. J. Heat Mass Transfer
,
149
, p.
119128
.
27.
Zoller
,
S.
,
Koepf
,
E.
,
Roos
,
P.
, and
Steinfeld
,
A.
,
2019
, “
Heat Transfer Model of a 50 KW Solar Receiver-Reactor for Thermochemical Redox Cycling Using Cerium Dioxide
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021014
.
28.
Herrmann
,
B.
,
Behzad
,
M.
,
Cardemil
,
J. M.
,
Calderón-Muñoz
,
W. R.
, and
Fernández
,
R. M.
,
2020
, “
Conjugate Heat Transfer Model for Feedback Control and State Estimation in a Volumetric Solar Receiver
,”
Sol. Energy
,
198
, pp.
343
354
.
29.
Avila-Marin
,
A. L.
,
Fernandez-Reche
,
J.
, and
Martinez-Tarifa
,
A.
,
2019
, “
Modelling Strategies for Porous Structures as Solar Receivers in Central Receiver Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
111
, pp.
15
33
.
30.
Casalegno
,
V.
,
Ferrari
,
L.
,
Fuentes
,
M. J.
,
De Zanet
,
A.
,
Gianella
,
S.
,
Ferraris
,
M.
, and
Candelario
,
V. M.
,
2021
, “
High-Performance Sic–Based Solar Receivers for CSP: Component Manufacturing and Joining
,”
Materials (Basel)
,
14
(
16
), pp.
1
17
.
31.
2021
, “
CFD Module User’s Guide
,” COMSOL Multiphysics, COMSOL 6.0, pp.
623
631
.
32.
Wu
,
Z.
,
Caliot
,
C.
,
Bai
,
F.
,
Flamant
,
G.
,
Wang
,
Z.
,
Zhang
,
J.
, and
Tian
,
C.
,
2010
, “
Experimental and Numerical Studies of the Pressure Drop in Ceramic Foams for Volumetric Solar Receiver Applications
,”
Appl. Energy
,
87
(
2
), pp.
504
513
.
33.
Schuetz
,
M. A.
, and
Glicksman
,
L. R.
,
1984
, “
A Basic Study of Heat Transfer Through Foam Insulation
,”
J. Cell. Plast.
,
20
(
2
), pp.
114
121
.
34.
Du
,
S.
,
Tong
,
Z. X.
,
Zhang
,
H. H.
, and
He
,
Y. L.
,
2019
, “
Tomography-Based Determination of Nusselt Number Correlation for the Porous Volumetric Solar Receiver With Different Geometrical Parameters
,”
Renewable Energy
,
135
, pp.
711
718
.
35.
Wang
,
P.
,
Li
,
J. B.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2021
, “
Non-Uniform and Volumetric Effect on the Hydrodynamic and Thermal Characteristic in a Unit Solar Absorber
,”
Energy
,
225
, p.
120130
.
36.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Numerical Simulation of Convective Heat Transfer Between Air Flow and Ceramic Foams to Optimise Volumetric Solar Air Receiver Performances
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1527
1537
.
37.
Li
,
X. L.
,
Sun
,
C.
,
Xia
,
X. L.
,
Li
,
Z. H.
, and
Li
,
Y.
,
2020
, “
Modeling of Coupled Heat Transfer in a Windowed Volumetric Solar Receiver
,”
Sol. Energy
,
201
, pp.
195
208
.
38.
Chen
,
X.
,
Xia
,
X. L.
,
Yan
,
X. W.
, and
Sun
,
C.
,
2017
, “
Heat Transfer Analysis of a Volumetric Solar Receiver With Composite Porous Structure
,”
Energy Convers. Manage.
,
136
, pp.
262
269
.
39.
Chen
,
X.
,
Xia
,
X. L.
,
Meng
,
X. L.
, and
Dong
,
X. H.
,
2015
, “
Thermal Performance Analysis on a Volumetric Solar Receiver With Double-Layer Ceramic Foam
,”
Energy Convers. Manage.
,
97
, pp.
282
289
.
40.
Nimvari
,
M. E.
,
Jouybari
,
N. F.
, and
Esmaili
,
Q.
,
2018
, “
A New Approach to Mitigate Intense Temperature Gradients in Ceramic Foam Solar Receivers
,”
Renewable Energy
,
122
, pp.
206
215
.
41.
Howell
,
J. R.
,
Menguc
,
M. P.
, and
Siegel
,
R.
,
2016
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
, pp.
576
578
.
42.
Gomez-Garcia
,
F.
,
González-Aguilar
,
J.
,
Olalde
,
G.
, and
Romero
,
M.
,
2016
, “
Thermal and Hydrodynamic Behavior of Ceramic Volumetric Absorbers for Central Receiver Solar Power Plants: A Review
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
648
658
.
43.
Wang
,
F.
,
Shuai
,
Y.
,
Tan
,
H.
, and
Yu
,
C.
,
2013
, “
Thermal Performance Analysis of Porous Media Receiver With Concentrated Solar Irradiation
,”
Int. J. Heat Mass Transfer
,
62
, pp.
247
254
.
44.
Sano
,
Y.
,
Iwase
,
S.
, and
Nakayama
,
A.
,
2012
, “
A Local Thermal Nonequilibrium Analysis of Silicon Carbide Ceramic Foam as a Solar Volumetric Receiver
,”
ASME J. Sol. Energy Eng.
,
134
(
2
), p.
021006
.
45.
Hurley
,
M. J.
,
2016
,
SFPE Handbook of Fire Protection Engineering
,
Springer
,
New York
, p.
3426
.
46.
Chen
,
X.
,
Xia
,
X. L.
,
Sun
,
C.
, and
Yan
,
X. W.
,
2017
, “
Transient Thermal Analysis of the Coupled Radiative and Convective Heat Transfer in a Porous Filled Tube Exchanger at High Temperatures
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2472
2480
.
47.
Munro
,
R. G.
,
1997
, “
Material Properties of a Sintered α-SiC
,”
J. Phys. Chem. Ref. Data
,
26
(
5
), pp.
1195
1203
.
48.
Khashan
,
S. A.
,
Al-Amiri
,
A. M.
, and
Al-Nimr
,
M. A.
,
2005
, “
Assessment of the Local Thermal Non-Equilibrium Condition in Developing Forced Convection Flows Through Fluid-Saturated Porous Tubes
,”
Appl. Therm. Eng.
,
25
(
10
), pp.
1429
1445
.
49.
Augsburger
,
G.
, and
Favrat
,
D.
,
2013
, “
Modelling of the Receiver Transient Flux Distribution Due to Cloud Passages on a Solar Tower Thermal Power Plant
,”
Sol. Energy
,
87
, pp.
42
52
.
You do not currently have access to this content.