Abstract

This paper reports the computational results of fluid flow and thermal characteristics in an isosceles trapezoidal solar air heater (SAH). By varying the base angle of the trapezoidal duct from 90 deg to 45 deg, six different models of solar air heater ducts are obtained. The six geometries of SAH ducts have cross sections of rectangular (90 deg), triangular (45 deg), and four isosceles trapezoidal (having base angles of 50 deg, 60 deg, 70 deg, and 80 deg) shapes. The solar radiation absorber plate width and the duct heights are maintained constant for all six models of SAH, i.e., 160 mm and 80 mm, respectively. The SAH is subjected to a constant and uniform heat flux value of 1000 W/m2 and Reynolds numbers varied from 5000 to 28,000. In all six cases, the size of the air heater is the same and having dimensions of 0.16 m width and 1 m length. For this investigation, a three-dimensional computational model has been developed and simulations are carried out using commercially available ansys fluent software. The numerical results are validated with the standard correlations and literature data, and a suitable model has been identified for the turbulence closure. A detailed analysis of the Nusselt number, temperature distribution over the SAH, and friction factor across the SAH duct is done. Empirical correlations for the estimation of heat transfer and friction factor have been developed as functions of the base angle of the duct and Reynolds number. An overall performance factor (λ) is adopted to get the combined effect of friction factor and Nusselt number with an intention to arrive at the optimum base angle of the SAH duct, and optimum geometry is identified. Based on the value of λ, it is concluded that the SAH duct with the highest base angle (90 deg) in this investigation, i.e., the rectangular duct, is the optimum among all the ducts considered in the study.

References

1.
Mukhopadhyay
,
K.
, and
Forssell
,
O.
,
2005
, “
An Empirical Investigation of Air Pollution From Fossil Fuel Combustion and Its Impact on Health in India During 1973–1974 to 1996–1997
,”
Ecol. Econ.
,
55
(
2
), pp.
235
250
.
2.
Hanif
,
I.
,
2018
, “
Impact of Fossil Fuels Energy Consumption, Energy Policies, and Urban Sprawl on Carbon Emissions in East Asia and the Pacific: A Panel Investigation
,”
Energy Strategy Rev.
,
21
, pp.
16
24
.
3.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
,
Oxford
.
4.
Sobhansarbandi
,
S.
, and
Atikol
,
U.
,
2015
, “
Performance of Flat-Plate and Compound Parabolic Concentrating Solar Collectors in Underfloor Heating Systems
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
034501
.
5.
Mohammadi
,
K.
, and
Sabzpooshani
,
M.
,
2013
, “
Comprehensive Performance Evaluation and Parametric Studies of Single Pass Solar Air Heater With Fins and Baffles Attached Over the Absorber Plate
,”
Energy
,
57
, pp.
741
750
.
6.
Mahmood
,
A. J.
,
Aldabbagh
,
L. B. Y.
, and
Egelioglu
,
F.
,
2015
, “
Investigation of Single and Double Pass Solar Air Heater With Transverse Fins and a Package Wire Mesh Layer
,”
Energy Convers. Manage.
,
89
, pp.
599
607
.
7.
Vaziri
,
R.
,
İlkan
,
M.
, and
Egelioglu
,
F.
,
2015
, “
Experimental Performance of Perforated Glazed Solar Air Heaters and Unglazed Transpired Solar Air Heater
,”
Sol. Energy
,
119
, pp.
251
260
.
8.
Garg
,
H. P.
,
Agarwal
,
R. K.
, and
Bhargava
,
A. K.
,
1991
, “
The Effect of Plane Booster Reflectors on the Performance of a Solar Air Heater With Solar Cells Suitable for a Solar Dryer
,”
Energy Convers. Manage.
,
32
(
6
), pp.
543
554
.
9.
Mohsenzadeh
,
M.
, and
Hosseini
,
R.
,
2015
, “
A Photovoltaic/Thermal System With a Combination of a Booster Diffuse Reflector and Vacuum Tube for Generation of Electricity and Hot Water Production
,”
Renew. Energy
,
78
, pp.
245
252
.
10.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Shalaby
,
S. M.
, and
Zayed
,
M. E.
,
2016
, “
Experimental Investigation of Thermal Performance of Flat and V-Corrugated Plate Solar Air Heaters With and Without PCM as Thermal Energy Storage
,”
Energy Convers. Manage.
,
113
, pp.
264
272
.
11.
Lakshmi
,
D. V. N.
,
Layek
,
A.
, and
Kumar
,
P. M.
,
2017
, “
Performance Analysis of Trapezoidal Corrugated Solar Air Heater With Sensible Heat Storage Material
,”
Energy Procedia
,
109
, pp.
463
470
.
12.
Kabeel
,
A. E.
,
Khalil
,
A.
,
Shalaby
,
S. M.
, and
Zayed
,
M. E.
,
2016
, “
Investigation of the Thermal Performances of Flat, Finned, and V-Corrugated Plate Solar Air Heaters
,”
ASME J. Sol. Energy Eng.
,
138
(
5
), p.
051004
.
13.
Bubnovich
,
V.
,
Reyes
,
A.
, and
Díaz
,
M.
,
2019
, “
Computational Simulation of the Thermal Performance of a Solar Air Heater Integrated With a Phase Change Material
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051011
.
14.
Singh
,
S.
,
Chander
,
S.
, and
Saini
,
J. S.
,
2012
, “
Investigations on Thermo-Hydraulic Performance Due to Flow-Attack-Angle in V-Down Rib With Gap in a Rectangular Duct of Solar Air Heater
,”
Appl. Energy
,
97
, pp.
907
912
.
15.
Sahu
,
M. K.
,
Sharma
,
M.
,
Matheswaran
,
M. M.
, and
Maitra
,
K.
,
2019
, “
On the Use of Longitudinal Fins to Enhance the Performance in Rectangular Duct of Solar Air Heaters—A Review
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030802
.
16.
Kumar
,
R.
, and
Kumar
,
A.
,
2016
, “
Thermal and Fluid Dynamic Characteristics of Flow Through Triangular Cross-Sectional Duct: A Review
,”
Renew. Sustain. Energy Rev.
,
61
, pp.
123
140
.
17.
Jain
,
S. K.
,
Agrawal
,
G. D.
,
Misra
,
R.
,
Verma
,
P.
,
Rathore
,
S.
, and
Jamuwa
,
D. K.
,
2019
, “
Performance Investigation of a Triangular Solar Air Heater Duct Having Broken Inclined Roughness Using Computational Fluid Dynamics
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061008
.
18.
Singh
,
S.
,
2018
, “
Thermal Performance Analysis of Semicircular and Triangular Cross-Sectioned Duct Solar Air Heaters Under External Recycle
,”
J. Energy Storage
,
20
, pp.
316
336
.
19.
Kumar
,
R.
, and
Kumar
,
A.
,
2017
, “
Experimental and Computational Fluid Dynamics Study on Fluid Flow and Heat Transfer in Triangular Passage Solar Air Heater of Different Configurations
,”
ASME J. Sol. Energy Eng.
,
139
(
4
), p.
041013
.
20.
Goel
,
V.
,
Guleria
,
P.
, and
Kumar
,
R.
,
2017
, “
Effect of Apex Angle Variation on Thermal and Hydraulic Performance of Roughened Triangular Duct
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
239
244
.
21.
Purohit
,
S.
,
Madhwesh
,
N.
,
Vasudeva Karanth
,
K.
, and
Yagnesh Sharma
,
N.
,
2019
, “
Heat Transfer Augmentation Using an Innovative Helicoidal Finned Absorber Plate in a Solar Air Heater—A Numerical Study
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031016
.
22.
Gabhane
,
M. G.
, and
Kanase-Patil
,
A. B.
,
2017
, “
Experimental Analysis of Double Flow Solar Air Heater With Multiple C Shape Roughness
,”
Sol. Energy
,
155
, pp.
1411
1416
.
23.
Saini
,
R. P.
, and
Verma
,
J.
,
2008
, “
Heat Transfer and Friction Factor Correlations for a Duct Having Dimple-Shape Artificial Roughness for Solar Air Heaters
,”
Energy
,
33
(
8
), pp.
1277
1287
.
24.
Behura
,
A. K.
,
Rout
,
S. K.
,
Pandya
,
H.
, and
Kumar
,
A.
,
2017
, “
Thermal Analysis of Three Sides Artificially Roughened Solar Air Heaters
,”
Energy Procedia
,
109
, pp.
279
285
.
25.
Mahanand
,
Y.
, and
Senapati
,
J. R.
,
2020
, “
Thermal Enhancement Study of a Transverse Inverted-T Shaped Ribbed Solar Air Heater
,”
Int. Commun. Heat Mass Transfer
,
119
, p.
104922
.
26.
Komolafe
,
C. A.
,
Oluwaleye
,
I. O.
,
Awogbemi
,
O.
, and
Osueke
,
C. O.
,
2019
, “
Experimental Investigation and Thermal Analysis of Solar Air Heater Having Rectangular Rib Roughness on the Absorber Plate
,”
Case Stud. Therm. Eng.
,
14
, p.
100442
.
27.
Singh
,
I.
, and
Singh
,
S.
,
2018
, “
CFD Analysis of Solar Air Heater Duct Having Square Wave Profiled Transverse Ribs as Roughness Elements
,”
Sol. Energy
,
162
, pp.
442
453
.
28.
Alam
,
T.
, and
Kim
,
M. H.
,
2017
, “
Heat Transfer Enhancement in Solar Air Heater Duct With Conical Protrusion Roughness Ribs
,”
Appl. Therm. Eng.
,
126
, pp.
458
469
.
29.
Bharadwaj
,
G.
,
Varun
,
Kumar
,
R.
, and
Sharma
,
A.
,
2017
, “
Heat Transfer Augmentation and Flow Characteristics in Ribbed Triangular Duct Solar Air Heater: An Experimental Analysis
,”
Int. J. Green Energy
,
14
(
7
), pp.
587
598
.
30.
Kumar
,
R.
,
Goel
,
V.
, and
Kumar
,
A.
,
2018
, “
Investigation of Heat Transfer Augmentation and Friction Factor in Triangular Duct Solar Air Heater Due to Forward Facing Chamfered Rectangular Ribs: A CFD Based Analysis
,”
Renew. Energy
,
115
, pp.
824
835
.
31.
Nidhul
,
K.
,
Kumar
,
S.
,
Yadav
,
A. K.
, and
Anish
,
S.
,
2020
, “
Computational and Experimental Studies on the Development of an Energy-Efficient Drier Using Ribbed Triangular Duct Solar Air Heater
,”
Sol. Energy
,
209
, pp.
454
469
.
32.
Cuzminschi
,
M.
,
Gherasim
,
R.
,
Girleanu
,
V.
,
Zubarev
,
A.
, and
Stamatin
,
I.
,
2018
, “
Innovative Thermo-Solar Air Heater
,”
Energy Build.
,
158
, pp.
964
970
.
33.
Jawad
,
Q. A.
,
Mahdy
,
A. M.
,
Khuder
,
A. H.
, and
Chaichan
,
M. T.
,
2020
, “
Improve the Performance of a Solar Air Heater by Adding Aluminum Chip, Paraffin Wax, and Nano-SiC
,”
Case Stud. Therm. Eng.
,
19
, p.
100622
.
34.
ASHRAE
,
1977
,
Methods of Testing to Determine the Thermal Performance of Solar Collectors
,
ASHRAE
,
New York
, Standard No. 93-1977.
35.
Chaube
,
A.
,
Sahoo
,
P. K.
, and
Solanki
,
S. C.
,
2006
, “
Analysis of Heat Transfer Augmentation and Flow Characteristics Due to Rib Roughness Over Absorber Plate of a Solar Air Heater
,”
Renew. Energy
,
31
(
3
), pp.
317
331
.
36.
Alam
,
T.
,
Saini
,
R. P.
, and
Saini
,
J. S.
,
2014
, “
Experimental Investigation on Heat Transfer Enhancement Due to V-Shaped Perforated Blocks in a Rectangular Duct of Solar Air Heater
,”
Energy Convers. Manage.
,
81
, pp.
374
383
.
37.
Misra
,
R.
,
Singh
,
J.
,
Jain
,
S. K.
,
Faujdar
,
S.
,
Agrawal
,
M.
,
Mishra
,
A.
, and
Goyal
,
P. K.
,
2020
, “
Prediction of Behavior of Triangular Solar Air Heater Duct Using V-Down Rib With Multiple Gaps and Turbulence Promoters as Artificial Roughness: A CFD Analysis
,”
Int. J. Heat Mass Transfer
,
162
, p.
120376
.
38.
Bhushan
,
B.
, and
Singh
,
R.
,
2010
, “
A Review on Methodology of Artificial Roughness Used in Duct of Solar Air Heaters
,”
Energy
,
35
(
1
), pp.
202
212
.
39.
Sharma
,
S. K.
, and
Kalamkar
,
V. R.
,
2017
, “
Experimental and Numerical Investigation of Forced Convective Heat Transfer in Solar Air Heater With Thin Ribs
,”
Sol. Energy
,
147
, pp.
277
291
.
40.
Salim
,
S. M.
, and
Cheah
,
S.
,
2009
, “
Wall Y Strategy for Dealing With Wall-Bounded Turbulent Flows
,”
Proceedings of the International Multiconference of Engineers and Computer Scientists
,
Hong Kong
,
Mar. 18–20
, Vol.
2
, pp.
2165
2170
.
41.
Patankar
,
S.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, 1st ed.,
CRC Press
,
Washington, DC
.
42.
Daschiel
,
G.
,
Frohnapfel
,
B.
, and
Jovanović
,
J.
,
2013
, “
Numerical Investigation of Flow Through a Triangular Duct: The Coexistence of Laminar and Turbulent Flow
,”
Int. J. Heat Fluid Flow
,
41
, pp.
27
33
.
43.
Hans
,
V. S.
,
Gill
,
R. S.
, and
Singh
,
S.
,
2017
, “
Heat Transfer and Friction Factor Correlations for a Solar Air Heater Duct Roughened Artificially With Broken Arc Ribs
,”
Exp. Therm. Fluid. Sci.
,
80
, pp.
77
89
.
44.
Bejan
,
A.
, and
Kraus
,
A. D.
,
2003
, “Heat Transfer Enhancement,”
Heat Transfer Handbook
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
1029
1130
.
You do not currently have access to this content.