Abstract

The high cost of the solar tracking systems is the major obstacle facing the growth of the solar harvesting technology. Therefore, reducing the solar tracking cost is necessary for developing this important energy sector. This study developed a simple and low-cost solar tracking system for parabolic concentrator (PCST) assisting tubular solar still (TSS). A single-axis solar tracking mechanism is developed based on two small light-dependent resistors (LDRs) shielded by a blank sheet which keeps the two cells shielded from sunlight. When the sunlight moves, one of the two LDRs will gain some light activating a switch to turn on the driving motor moving the system in the opposite direction till the LDR shielded again. By this simple mechanism, the two LDRs are shielded from sunlight all the time and consequently, the solar collector is always facing the sunlight. A simple parametric study is also conducted for an efficient PCST-TSS device with higher freshwater productivity. The performance of the most promising five design categories is compared. Results showed that the lowest cost tracking system was 34.6% lower than the highest one. Moreover, the lowest CPL was $0.0074/L which is 43.1% lower than the highest CPL category. Moreover, a comparison with other studies showed high potential for the present significant reduction in the cost which ranges between 43.1% and 87% compared with the recent related studies. The developed device is fully self-reliance and suitable for rural and isolated communities having limited infrastructure.

References

1.
Elashmawy
,
M.
, and
Alatawi
,
I.
,
2020
, “
Atmospheric Water Harvesting From Low Humid Region of Hail City in Saudi Arabia
,”
Nat. Resour. Res.
,
29
(
6
), pp.
3689
3700
.
2.
Elashmawy
,
M.
,
2020
, “
Experimental Study on Water Extraction From Atmospheric Air Using Tubular Solar Still
,”
J. Cleaner Prod.
,
249
, p.
119322
.
3.
Elashmawy
,
M.
,
2017
, “
An Experimental Investigation of a Parabolic Concentrator Solar Tracking System Integrated With a Tubular Solar Still
,”
Desalination
,
411
, pp.
1
8
.
4.
Arunkumar
,
T.
,
Velraj
,
R.
,
Denkenberger
,
D. C.
,
Sathyamurthy
,
R.
,
Kumar
,
K. V.
, and
Ahsan
,
A.
,
2016
, “
Productivity Enhancements of Compound Parabolic Concentrator Tubular Solar Stills
,”
Renewable Energy
,
88
, pp.
391
400
.
5.
Ye
,
H.
,
Zheng
,
Y.
,
Zheng
,
H.
, and
Liang
,
S.
,
2020
, “
Sustainable Agriculture Irrigation System Using a Novel Solar Still Design With a Compound Parabolic Concentrator Reflector
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
031010
.
6.
Nguyen
,
V.
,
Hung
,
W.
,
Cheng
,
T.
, and
Fang
,
T.
,
2019
, “
Investigation of a Desalination System With the Hybrid Solar/Electrical Heating Module
,”
ASME J. Sol. Energy Eng.
,
142
(
2
), p.
021001
.
7.
Ardanuç
,
S. M.
,
Lal
,
A.
, and
Jones
,
S. C.
,
2011
, “
Concentrated Solar Power Harvesting Using Self-Powered, Wireless, Thin-Profile, Lightweight Solar Tiles
,”
ASME J. Sol. Energy Eng.
,
133
(
3
), p.
035001
.
8.
Elashmawy
,
M.
,
2019
, “
Effect of Surface Cooling and Tube Thickness on the Performance of a High Temperature Standalone Tubular Solar Still
,”
Appl. Therm. Eng.
,
156
, pp.
276
286
.
9.
Elashmawy
,
M.
,
2020
, “
Improving the Performance of a Parabolic Concentrator Solar Tracking Tubular Solar Still (PCST-TSS) Using Gravel As a Sensible Heat Storage Material
,”
Desalination
,
473
, pp.
1
10
.
10.
Elashmawy
,
M.
, and
Alshammari
,
F.
,
2020
, “
Atmospheric Water Harvesting From Low Humid Regions Using Tubular Solar Still Powered by a Parabolic Concentrator System
,”
J. Cleaner Prod.
,
256
, p.
120329
.
11.
Ahmed
,
M. M. Z.
,
Alshammari
,
F.
,
Abdullah
,
A. S.
, and
Elashmawy
,
M.
,
2021
, “
Experimental Investigation of a Low Cost Inclined Wick Solar Still With Forced Continuous Flow
,”
Renewable Energy
,
179
, pp.
319
326
.
12.
Alshammari
,
F.
,
Elashmawy
,
M.
, and
Ahmed
,
M. M. Z.
,
2021
, “
Cleaner Production of Fresh-Water Using Multi-effect Tubular Solar Still
,”
J. Clean. Prod.
,
281
, p.
125301
.
13.
Ahmed
,
M. M. Z.
,
Alshammari
,
F.
,
Abdullah
,
A. S.
, and
Elashmawy
,
M.
,
2021
, “
Enhancing Tubular Solar Still Performance Using Double Effect With Direct Sunrays Concentration
,”
Sol. Energy Mater. Sol. Cells
,
230
, p.
111214
.
14.
Elashmawy
,
M.
,
Alhadri
,
M.
, and
Ahmed
,
M. M. Z.
,
2021
, “
Enhancing Tubular Solar Still Performance Using Novel PCM-Tubes
,”
Desalination
,
500
, p.
114880
.
15.
Elashmawy
,
M.
, and
Ahmed
,
M. M. Z.
,
2021
, “
Enhancing Tubular Solar Still Productivity Using Composite Aluminum/Copper/Sand Sensible Energy Storage Tubes
,”
Sol. Energy Mater. Sol. Cells
,
221
, p.
110882
.
16.
Ahmed
,
M. M. Z.
,
Alshammari
,
F.
,
Abdullah
,
A. S.
, and
Elashmawy
,
M.
,
2021
, “
Basin and Tubular Solar Distillation Systems: A Review
,”
Process Saf. Environ. Prot.
,
150
, pp.
157
178
.
17.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Du
,
B. C.
,
Wang
,
K.
, and
Liang
,
Q.
,
2015
, “
Geometric Optimization on Optical Performance of Parabolic Trough Solarcollector Systems Using Particle Swarm Optimization Algorithm
,”
Appl. Energy
,
148
, pp.
282
293
.
18.
Rodriguez-Sanchez
,
D.
, and
Rosengarten
,
G.
,
2015
, “
Improving the Concentration Ratio of Parabolic Troughs Using a Second-Stage Flat Mirror
,”
Appl. Energy
,
159
, pp.
620
632
.
19.
Cheng
,
Z. D.
,
Zhao
,
X. R.
, and
He
,
Y. L.
,
2018
, “
Novel Optical Efficiency Formulas for Parabolic Trough Solar Collectors: Computing Method and Applications
,”
Appl. Energy
,
224
, pp.
682
697
.
20.
Uzair
,
M.
, and
Rehman
,
N. U.
,
2021
, “
Intercept Factor for a Beam-Down Parabolic Trough Collector
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061002
.
21.
Yılmaza
,
I. H.
, and
Mwesigye
,
A.
,
2018
, “
Modeling, Simulation and Performance Analysis of Parabolic Trough Solar Collectors: A Comprehensive Review
,”
Appl. Energy
,
225
, pp.
135
174
.
22.
Abdullahi
,
B.
,
AL-Dadah
,
R. K.
,
Mahmoud
,
S.
, and
Hood
,
R.
,
2015
, “
Optical and Thermal Performance of Double Receiver Compound Parabolic Concentrator
,”
Appl. Energy
,
159
, pp.
1
10
.
23.
Tian
,
M.
,
Su
,
Y.
,
Zheng
,
H.
,
Pei
,
G.
,
Li
,
G.
, and
Riffat
,
S.
,
2018
, “
A Review on the Recent Research Progress in the Compound Parabolic Concentrator (CPC) for Solar Energy Applications
,”
Renewable Sustainable Energy Rev.
,
82 Part 1
, pp.
1272
1296
.
24.
Beily
,
M. D. E.
,
Sinaga
,
R.
,
Syarif
,
Z.
,
Pae
,
M. G.
, and
Rochani
,
R.
,
2020
, “
Design and Construction of a Low Cost of Solar Tracker Two Degree of R. Freedom (DOF) Based on Arduino
,”
International Conference on Applied Science and Technology (iCAST)
,
Padang, Indonesia
,
Oct. 24–24,
pp.
384
388
.
25.
Jamroen
,
C.
,
Komkum
,
P.
,
Kohsri
,
S.
,
Himananto
,
W.
,
Panupintu
,
S.
, and
Unkat
,
S.
,
2020
, “
A Low-Cost Dual-Axis Solar Tracking System Based on Digital Logic Design: Design and Implementation
,”
Sustainable Energy Technol. Assess
,
37
, p.
100618
.
26.
Malinda
,
Y.
,
Pushpika
,
D.
,
Haleem
,
M.
,
Saja
,
A.
,
Kariapper
,
S.
,
Juhaniya
,
S.
,
Elashmawy
,
M.
, and
Alshammari
,
F.
,
2021
, “
Precision Dual Axis Tracker for Solar Concentrator
,”
YMS2021, IESL IESL Young Members’ Technical Conference
,
Oct. 9,
pp.
87
91
, https://iesl.lk/index.php?option=com_content&view=article&id=194&Itemid=391&lang=en.
27.
Ahmad
,
S.
,
Razali
,
A. N.
, and
Misrun
,
M. I.
,
2021
, “
Effective and Low-Cost Arduino Based Dual-Axis Solar Tracker
,”
J. Phys. Conf. Ser.
,
2021
(
1878
), p.
012049
.
28.
Mohanapriya
,
V.
,
Manimegalai
,
V.
,
Praveenkumar
,
V.
, and
Sakthivel
,
P.
,
2021
, “
Implementation of Dual Axis Solar Tracking System
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
1084
(
1
), p.
012073
.
29.
Zhang
,
S.
,
Li
,
C.
,
Zhang
,
J.
,
Miao
,
H.
, and
Zhang
,
Y.
(
2019
). “
Design and Structural Analysis of the Sun Ray Double Axis Tracking Device
ASME J. Sol. Energy Eng.
,
141
(
4
), p
041001
.
30.
Islam
,
K. M. S.
, and
Fukuhara
,
T.
,
2007
, “
Production Analysis of a Tubular Solar Still
,”
Doboku Gakkai Ronbunshuu B.
,
63
(
2
), pp.
108
119
.
31.
Ahsan
,
A.
, and
Fukuhara
,
T.
,
2010
, “
Mass and Heat Transfer Model of Tubular Solar Still
,”
Sol. Energy
,
84
(
7
), pp.
1147
1156
.
You do not currently have access to this content.