Phase change materials (PCMs) used in the building walls constitute an attractive way to reduce the energy consumption and to increase the occupant's thermal comfort. However, there are some challenges to be faced among which the critical one is the PCM layer location allowing the greater heat flux reduction. In this work, the potential of PCM wallboards is evaluated experimentally using a heated reduced scale cavity including walls with or without PCM in a laboratory conditions. The cavity at reduced scale provides the flexibility to test most kinds of wall constructions in real time and allows faster installation and dismantling of the test walls. Three different PCM layer locations inside the walls are examined in terms of heat flux reduction and outside surface temperatures. The results confirm that the PCM layer reduces the peak heat flux compared to a reference wall (wall without PCM). Indeed, the PCM layer hugely affects the peak heat flux when it is placed on the inner face of the walls, near to the heat source. At this location, the peak heat flux reduction, compared to the reference wall, is 32.9%. Furthermore, for numerical validation purpose, the outside overall heat coefficient of the cavity outside walls is determined based on the experimental data.

References

1.
Allouhi
,
A.
,
El Fouih
,
Y.
,
Kousksou
,
T.
,
Jamil
,
A.
,
Zeraouli
,
Y.
, and
Mourad
,
Y.
,
2015
, “
Energy Consumption and Efficiency in Buildings: Current Status and Future Trends
,”
J. Cleaner Prod.
,
109
, pp.
118
130
.
2.
Jacob
,
R.
, and
Bruno
,
F.
,
2015
, “
Review on Shell Materials Used in the Encapsulation of Phase Change Materials for High Temperature Thermal Energy Storage
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
79
87
.
3.
Zhang
,
H. L.
,
Baeyens
,
J.
,
Degrève
,
J.
,
Cáceres
,
G.
,
Segal
,
R.
, and
Pitié
,
F.
,
2014
, “
Latent Heat Storage With Tubular-Encapsulated Phase Change Materials (PCMs)
,”
Energy
,
76
, pp.
66
72
.
4.
Rathod
,
M. K.
, and
Banerjee
,
J.
,
2013
, “
Thermal Stability of Phase Change Materials Used in Latent Heat Energy Storage Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
246
258
.
5.
Pielichowska
,
K.
, and
Pielichowski
,
K.
,
2014
, “
Phase Change Materials for Thermal Energy Storage
,”
Prog. Mater. Sci.
,
65
, pp.
67
123
.
6.
Lee
,
K. O.
,
Medina
,
M. A.
,
Raith
,
E.
, and
Sun
,
X.
,
2015
, “
Assessing the Integration of a Thin Phase Change Material (PCM) Layer in a Residential Building Wall for Heat Transfer Reduction and Management
,”
Appl. Energy
,
137
, pp.
699
706
.
7.
Jin
,
X.
,
Medina
,
M. A.
, and
Zhang
,
X.
,
2014
, “
On the Placement of a Phase Change Material Thermal Shield Within the Cavity of Buildings Walls for Heat Transfer Rate Reduction
,”
Energy
,
73
, pp.
780
786
.
8.
Ahmad
,
M.
,
Bontemps
,
A.
,
Sallée
,
H.
, and
Quenard
,
D.
,
2006
, “
Experimental Investigation and Computer Simulation of Thermal Behaviour of Wallboards Containing a Phase Change Material
,”
Energy Build.
,
38
(
4
), pp.
357
366
.
9.
Bouhssine
,
Z.
,
Najam
,
M.
, and
El Alami
,
M.
,
2016
, “
Phase Change Material for Solar Thermal Energy Storage in Buildings: Numerical Study
,”
ASME J. Sol. Energy Eng.
,
138
(
6
), p.
061006
.
10.
Konuklu
,
Y.
,
Ostry
,
M.
,
Paksoy
,
H. O.
, and
Charvat
,
P.
,
2015
, “
Review on Using Microencapsulated Phase Change Materials (PCM) in Building Applications
,”
Energy Build.
,
106
, pp.
134
155
.
11.
Zhou
,
D.
,
Zhao
,
C. Y.
, and
Tian
,
Y.
,
2012
, “
Review on Thermal Energy Storage With Phase Change Materials (PCMs) in Building Applications
,”
Appl. Energy
,
92
, pp.
593
605
.
12.
Wang
,
X.
,
Yu
,
H.
,
Li
,
L.
, and
Zhao
,
M.
,
2016
, “
Experimental Assessment on a Kind of Composite Wall Incorporated With Shape-Stabilized Phase Change Materials (SSPCMs)
,”
Energy Build.
,
128
, pp.
567
574
.
13.
Diaconu
,
B. M.
,
2011
, “
Thermal Energy Savings in Buildings With PCM-Enhanced Envelope: Influence of Occupancy Pattern and Ventilation
,”
Energy Build.
,
43
(
1
), pp.
101
107
.
14.
Zhou
,
G.
,
Yang
,
Y.
,
Wang
,
X.
, and
Zhou
,
S.
,
2009
, “
Numerical Analysis of Effect of Shape-Stabilized Phase Change Material Plates in a Building Combined With Night Ventilation
,”
Appl. Energy
,
86
(
1
), pp.
52
59
.
15.
Mandilaras
,
I.
,
Stamatiadou
,
M.
,
Katsourinis
,
D.
,
Zannis
,
G.
, and
Founti
,
M.
,
2013
, “
Experimental Thermal Characterization of a Mediterranean Residential Building With PCM Gypsum Board Walls
,”
Building Environ.
,
61
, pp.
93
103
.
16.
,
A. V.
,
Azenha
,
M.
,
de Sousa
,
H.
, and
Samagaio
,
A.
,
2012
, “
Thermal Enhancement of Plastering Mortars With Phase Change Materials: Experimental and Numerical Approach
,”
Energy Build.
,
49
, pp.
16
27
.
17.
Voelker
,
C.
,
Kornadt
,
O.
, and
Ostry
,
M.
,
2008
, “
Temperature Reduction Due to the Application of Phase Change Materials
,”
Energy Build.
,
40
(
5
), pp.
937
944
.
18.
Jin
,
X.
,
Medina
,
M. A.
, and
Zhang
,
X.
,
2016
, “
Numerical Analysis for the Optimal Location of a Thin PCM Layer in Frame Walls
,”
Appl. Therm. Eng.
,
103
, pp.
1057
1063
.
19.
Gounni
,
A.
, and
El Alami
,
M.
,
2017
, “
Experimental Study of Heat Transfer in a Reduced Scale Cavity Incorporating Phase Change Material Into Its Vertical Walls
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011010
.
20.
Gounni
,
A.
, and
El Alami
,
M.
,
2017
, “
The Optimal Allocation of the PCM Within a Composite Wall for Surface Temperature and Heat Flux Reduction: An Experimental Approach
,”
Appl. Therm. Eng.
,
127
, pp.
1488
1494
.
21.
DuPont/Energain,
2010
,
PCM Guidebook: New Thermal Mass Solution for Low Inertia Buildings
, DuPont™/Energain®, Luxembourg, UK.
22.
Lee
,
K. O.
,
Medina
,
M. A.
, and
Sun
,
X.
,
2015
, “
On the Use of Plug-and-Play Walls (PPW) for Evaluating Thermal Enhancement Technologies for Building Enclosures: Evaluation of a Thin Phase Change Material (PCM) Layer
,”
Energy Build.
,
86
, pp.
86
92
.
23.
Kuznik
,
F.
,
Virgone
,
J.
, and
Johannes
,
K.
,
2011
, “
In-Situ Study of Thermal Comfort Enhancement in a Renovated Building Equipped With Phase Change Material Wallboard
,”
Renewable Energy
,
36
(
5
), pp.
1458
1462
.
24.
Kuznik
,
F.
, and
Virgone
,
J.
,
2009
, “
Experimental Investigation of Wallboard Containing Phase Change Material: Data for Validation of Numerical Modeling
,”
Energy Build.
,
41
(
5
), pp.
561
570
.
You do not currently have access to this content.