Leading edge erosion is a considerable threat to wind turbine performance and blade maintenance, and it is very imperative to accurately predict the influence of various degrees of erosion on wind turbine performance. In the present study, an attempt to investigate the effects of leading edge erosion on the aerodynamics of wind turbine airfoil is undertaken by using computational fluid dynamics (CFD) method. A new pitting erosion model is proposed and semicircle cavities were used to represent the erosion pits in the simulation. Two-dimensional incompressible Reynolds-averaged Navier–Stokes equation and shear stress transport (SST) k–ω turbulence model are adopted to compute the aerodynamics of a S809 airfoil with leading edge pitting erosions, where the influences of pits depth, densities, distribution area, and locations are considered. The results indicate that pitting erosion has remarkably undesirable influences on the aerodynamic performance of the airfoil, and the critical pits depth, density, and distribution area degrade the airfoil aerodynamic performance mostly were obtained. In addition, the dominant parameters are determined by the correlation coefficient path analysis method, results showed that all parameters have non-negligible effects on the aerodynamics of S809 airfoil, and the Reynolds number is of the most important, followed by pits density, pits depth, and pits distribution area. Meanwhile, the direct and indirect effects of these factors are analyzed, and it is found that the indirect effects are very small and the parameters can be considered to be independent with each other.

References

1.
Zhang
,
S.
,
Dam-Johansen
,
K.
,
Nørkjær
,
S.
,
Bernad
,
P. L.
, and
Kiil
,
S.
,
2013
, “
Erosion of Wind Turbine Blade Coatings—Design and Analysis of Jet-Based Laboratory Equipment for Performance Evaluation
,”
Prog. Org. Coat.
,
78
, pp.
103
115
.
2.
Siddons
,
C.
,
Macleod
,
C.
,
Yang
,
L.
, and
Stack
,
M.
,
2015
, “
An Experimental Approach to Analysing Rain Droplet Impingement on Wind Turbine Blade Materials
,”
EWEA Annual Event
, Paris, France, Nov. 17–20.https://www.ewea.org/annual2015/conference/submit-an-abstract/pdf/5601128404658.pdf
3.
Zhang
,
S.
,
Dam-Johansen
,
K.
,
Bernad
,
P. L.
, and
Kiil
,
S.
,
2015
, “
Rain Erosion of Wind Turbine Blade Coatings Using Discrete Water Jets: Effects of Water Cushioning, Substrate Geometry, Impact Distance, and Coating Properties
,”
Wear
,
328–329
, pp.
140
148
.
4.
Keegan
,
M. H.
,
Nash
,
D.
, and
Stack
,
M.
,
2013
, “
On Erosion Issues Associated With the Leading Edge of Wind Turbine Blades
,”
J. Phys. D
,
46
(
38
), p.
383001
.
5.
Chinmay
,
S.
,
2012
, “
Turbine Blade Erosion and the Use of Wind Protection Tape
,”
M.S. thesis
, University of Illinois, Champaign, IL.https://www.ideals.illinois.edu/handle/2142/31084
6.
Sareen
,
A.
,
Sapre
,
C. A.
, and
Selig
,
M. S.
,
2014
, “
Effects of Leading Edge Erosion on Wind Turbine Blade Performance
,”
Wind Energy
,
17
(
10
), pp.
1531
1542
.
7.
Powell
,
S.
,
2011
, “
3M Wind Blade Protection Coating W4600
,” Industrial Marketing Presentation, http://www.3M.com. or http://www.pressebox.com/attachment/404803/Wind_Tape_Example_mittel. jpg.
8.
Wang
,
Y.
,
2012
, “
The Status Quo of Wind Turbine Blades Development in China
,”
Wind Energy Resour.
,
2
, pp.
11
14
.
9.
Ehrmann
,
R. S.
,
White
,
E. B.
,
Maniaci
,
D. C.
,
Chow
,
R.
,
Langel
,
C. M.
, and
Van Dam
,
C. P.
,
2013
, “
Realistic Leading-Edge Roughness Effects on Airfoil Performance
,”
AIAA
Paper No. 2013-2800.https://doi.org/10.2514/6.2013-2800
10.
Lu
,
J.
,
Mu
,
S.
, and
Li
,
Q.
,
2015
, “
Progress on Leading Edge Protection Technology of Wind Turbine Blades
,”
Fiber Reinf. Plast./Compos.
,
7
, pp.
91
95
.
11.
White
,
E. B.
,
Kutz
,
D.
,
Freels
,
J.
,
Hidore
,
J. P.
,
Grife
,
R.
,
Sun
,
Y. P.
, and
Chao
,
D.
,
2011
, “
Leading-Edge Roughness Effects on 633-418 Airfoil Performance
,”
AIAA
Paper No. 2011-352.https://doi.org/10.2514/6.2011-352
12.
McGowan
,
J. G.
, and
Connors
,
S. R.
,
2000
, “
Windpower: A Turn of the Century Review
,”
Annu. Rev. Energy Environ.
,
25
(
1
), pp.
147
197
.
13.
Standish
,
K.
,
Rimmington
,
P.
,
Laursen
,
J.
,
Paulsen
,
H. N.
, and
Nielsen
,
D.
,
2010
, “
Computational Prediction of Airfoil Roughness Sensitivity
,”
AIAA
Paper No. 2010-460.http://enu.kz/repository/2010/AIAA-2010-460.pdf
14.
Sareen
,
A.
,
Sapre
,
C.
, and
Selig
,
M.
,
2012
, “
Effects of Leading-Edge Protection Tape on Wind Turbine Blade Performance
,”
Wind Eng.
,
36
(
5
), pp.
525
534
.
15.
Slot
,
H.
,
Gelinck
,
E.
,
Rentrop
,
C.
, and
Van der Heide
,
E.
,
2015
, “
Leading Edge Erosion of Coated Wind Turbine Blades: Review of Coating Life Models
,”
Renewable Energy
,
80
, pp.
837
848
.
16.
Amirzadeh
,
B.
,
Louhghalam
,
A.
,
Raessi
,
M.
, and
Tootkaboni
,
M.
,
2017
, “
A Computational Framework for the Analysis of Rain-Induced Erosion in Wind Turbine Blades—Part II: Drop Impact-Induced Stresses and Blade Coating Fatigue Life
,”
J. Wind Eng. Ind. Aerodyn.
,
163
, pp.
44
54
.
17.
Gharali
,
K.
, and
Johnson
,
D. A.
,
2012
, “
Numerical Modeling of an S809 Airfoil Under Dynamic Stall, Erosion and High Reduced Frequencies
,”
Appl. Energy
,
93
, pp.
45
52
.
18.
Wang
,
Y.
,
Zheng
,
X.
, and
Hu
,
R.
,
2016
, “
Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil
,”
PLoS One
,
11
(
9
), p.
e0163443
.
19.
Gaudern
,
N.
,
2014
, “
A Practical Study of the Aerodynamic Impact of Wind Turbine Blade Leading Edge Erosion
,”
J. Phys.
,
524
(
1
), p.
012031
.https://doi.org/10.1088/1742-6596/524/1/012031
20.
Rempel
,
L.
,
2012
, “
Rotor Blade Leading Edge Erosion-Real Life Experiences
,”
Wind Syst. Mag.
,
10
, pp.
22
24
.http://www.windsystemsmag.com/article/detail/426/rotor-blade-leadingߝedge-erosionߝrealߝlife-experiences
21.
Wang
,
Y. L.
,
2009
, “
The Process of the Erosion of a Rigid Wind Turbine Blade
,” Shenyang Lvxinxin New Wind Energy Equipment Maintenance Co., Shenyang, China, accessed Aug. 24, 2017, http://www.flfdwh.com/view.asp?id=26
22.
ANSYS
,
2010
, “
ANSYS FLUENT 13.0 (Theory Guide)
,” ANSYS, Inc., Canonsburg, PA.
23.
Anderson
,
J. D.
,
2010
,
Fundamentals of Aerodynamics
,
McGraw-Hill Education
, New York.
24.
Wang
,
Y.
,
Hu
,
R. F.
, and
Wang
,
P.
,
2017
, “
Research on the Aerodynamic and Flow Field Characteristics of S809 Airfoil Based on the Leading Edge Erosion Modeling
,”
Acta Energ. Sol. Sin.
,
38
(
37
), pp.
605
613
.
25.
Ramsay
,
R. R.
,
Hoffmann
,
M. J.
, and
Gregorek
,
G. M.
,
1995
, “
Effects of Grit Roughness and Pitch Oscillations on the S809 Airfoil
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-442-7817
.https://wind.nrel.gov/airfoils/OSU_data/reports/3x5/s809.pdf
26.
Guerri
,
O.
,
Bouhadef
,
K.
, and
Harhad
,
A.
,
2006
, “
Turbulent Flow Simulation of the NREL S809 Airfoil
,”
Wind Eng.
,
30
(
4
), pp.
287
301
.
27.
Wang
,
S.
,
Ingham
,
D. B.
,
Ma
,
L.
,
Pourkashanian
,
M.
, and
Tao
,
Z.
,
2012
, “
Turbulence Modeling of Deep Dynamic Stall at Relatively Low Reynolds Number
,”
J. Fluids Struct.
,
33
, pp.
191
209
.
28.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul., Heat Mass Transfer
,
4
(
1
), epub.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.2814&rep=rep1&type=pdf
29.
Huebsch
,
W. W.
, and
Rothmayer
,
A. P.
,
2004
, “
Numerical Prediction of Unsteady Vortex Shedding for Large Leading-Edge Roughness
,”
Comput. Fluids
,
33
(
3
), pp.
405
434
.
30.
Ren
,
N.
, and
Ou
,
J.
,
2009
, “
Dust Effect on the Performance of Wind Turbine Airfoils
,”
J. Electromagn. Anal. Appl.
,
1
(
2
), pp.
102
107
.
31.
Wright
,
S.
,
1921
, “
Correlation and Causation
,”
J. Agric. Res.
,
20
(
7
), pp.
557
585
.http://www.ssc.wisc.edu/soc/class/soc952/Wright/Wright_Correlation%20and%20Causation.pdf
32.
SAS Institute
,
1985
,
SAS User's Guide: Statistics
,
SAS Institute
, Cary, NC.
33.
Dewey
,
D. R.
, and
Lu
,
K.
,
1959
, “
A Correlation and Path-Coefficient Analysis of Components of Crested Wheatgrass Seed Production
,”
Agron. J.
,
51
(
9
), pp.
515
518
.
You do not currently have access to this content.