The modern concepts of sustainable cities and smart grids have caused an increase in the installation of solar systems in urban and suburban areas, where, due to the presence of many obstacles or design constraints, photovoltaic (PV) modules can operate in operating conditions that are very different from the optimal ones (e.g., standard test conditions, STC). Shading and reflection are the main phenomena that cause uneven distribution of irradiance on PV cells; in turn, they create a nonuniform distribution of PV cell temperatures. The latter problem can also be caused by different ventilation regimes in various parts of the PV array. On the other hand, due to the need to exploit different solar technologies (solar thermal and photovoltaic), problems related to the availability of a useful surface can arise. In this context, there is a technology that produces heat end electrical energy at the same time, such a technology is referred to as a solar hybrid photovoltaic/thermal (PV/T). Here, the uneven distribution of temperature is a design input and its effect depends on both path of the water flow and the PV cell connections. To study the electrical behavior of a PV array under mismatching conditions, a suitable matlab/simulink model has been developed. The model has been tested both numerically and experimentally. Finally, an application of this model in the electrical analysis of a PV/T module is reported, and the results are discussed.

References

1.
Calvillo
,
C. F.
,
Sánchez-Miralles
,
A.
, and
Villar
,
J.
,
2016
, “
Energy Management and Planning in Smart Cities
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
273
287
.
2.
Michael
,
J. J.
,
Iniyan
,
S.
, and
Goic
,
R.
,
2015
, “
Flat Plate Solar Photovoltaic–Thermal (PV/T) Systems: A Reference Guide
,”
Renewable Sustainable Energy Rev.
,
51
, pp.
62
68
.
3.
Good
,
C.
,
2016
, “
Environmental Impact Assessments of Hybrid Photovoltaic–Thermal (PV/T) Systems–A Review
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
234
239
.
4.
Kodysh
,
J. B.
,
Omitaomu
,
O. A.
,
Bhaduri
,
B. L.
, and
Neish
,
B. S.
,
2013
, “
Methodology for Estimating Solar Potential on Multiple Building Rooftops for Photovoltaic Systems
,”
Sustainable Cities Soc.
,
8
, pp.
31
41
.
5.
Mandalaki
,
M.
,
Papantoniou
,
S.
, and
Tsoutsos
,
T. D.
,
2014
, “
Assessment of Energy Production From Photovoltaic Modules Integrated in Typical Shading Devices
,”
Sustainable Cities Soc.
,
10
, pp.
222
231
.
6.
Kang
,
S.
,
Hwang
,
T.
, and
Kim
,
J. T.
,
2012
, “
Theoretical Analysis of the Blinds Integrated Photovoltaic Modules
,”
Energy Build.
,
46
, pp.
86
91
.
7.
Ayaz
,
R.
,
Nakir
,
I.
, and
Tanrioven
,
M.
,
2014
, “
An Improved matlab–simulink Model of PV Module Considering Ambient Conditions
,”
Int. J. Photoenergy
,
2014
, p. 315893.
8.
Selmi
,
T.
,
Abdul-Niby
,
M.
,
Devis
,
L.
, and
Davis
,
A.
,
2014
, “
P&O MPPT Implementation Using matlab/simulink
,”
Ninth International Conference on Ecological Vehicles and Renewable Energies
, Monte-Carlo, Monaco, Mar. 25–27.
9.
Blorfan
,
A.
,
Flieller
,
D.
,
Wira
,
P.
,
Sturtzer
,
G.
, and
Jean
,
M.
,
2010
, “
A New Approach for Modeling the Photovoltaic Cell Using Orcad Comparing With the Model Done in matlab
,”
Int. Rev. Modell. Simul.
,
3
(
5
), pp.
948
954
.http://www.trop.uha.fr/pdf/iremos_2010.pdf
10.
Wang
,
Y. J.
, and
Hsu
,
P. C.
,
2011
, “
Modelling of Solar Cells and Modules Using Piecewise Linear Parallel Branches
,”
IET Renewable Power Gener.
,
5
(
3
), pp.
215
222
.
11.
Campbell
,
R. C.
,
2007
, “
A Circuit-Based Photovoltaic Array Model for Power System Studies
,”
39th North American Power Symposium
,
IEEE
, Las Cruces, NM, Sept. 30–Oct. 2.
12.
Sreekumar
,
A. V.
, and
Rajendren
,
A.
,
2014
, “
Maximum Power Point Tracking of PV Arrays Under Partial Shading Condition Using Sepic Converter
,”
Int. J. Res. Eng. Technol.
,
3
(
7
), pp.
398
404
.http://esatjournals.net/ijret/2014v03/i19/IJRET20140319072.pdf
13.
Jena
,
D.
, and
Ramana
,
V. V.
,
2015
, “
Modeling of Photovoltaic System for Uniform and Non-Uniform Irradiance: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
400
417
.
14.
Boyd
,
M.
,
Klein
,
S.
,
Reindl
,
D. T.
, and
Dougherty
,
B.
,
2011
, “
Evaluation and Validation of Equivalent Circuit Photovoltaic Solar Cell Performance Models
,”
ASME J. Sol. Energy Eng.
,
133
(
2
), p.
21005
.
15.
Rosa-Clot
,
M.
,
Rosa-Clot
,
P.
, and
Tina
,
G. M.
,
2011
, “
TESPI: Thermal Electric Solar Panel Integration
,”
Solar Energy
,
85
(
10
), pp.
2433
2442
.
16.
Grasso
,
A. D.
,
Pennisi
,
S.
,
Ragusa
,
M.
,
Tina
,
G. M.
, and
Ventura
,
C.
,
2015
, “
Performance Evaluation of a Multistring Photovoltaic Module With Distributed DC–DC Converters
,”
IET Renewable Power Gener.
,
9
(
8
), pp.
935
942
.
17.
Tina
,
G. M.
, and
Abate
,
R.
,
2008
, “
Experimental Verification of Thermal Behavior of Photovoltaic Modules
,” 14th
IEEE
Mediterranean Electrotechnical Conference
, Ajaccio, France, May 5–7.
You do not currently have access to this content.