The specific heat capacity of a carbonate salt eutectic-based carbon nanotube nanomaterial was measured in present study. Differential scanning calorimeter (DSC) was used to measure the specific heat capacity of the nanomaterials. The specific heat capacity value in liquid phase was compared with that of a pure eutectic. A carbonate salt eutectic was used as a base material, which consists of lithium carbonate and potassium carbonate by 62:38 molar ratio. Multiwalled carbon nanotubes (CNT) at 1% mass concentration were dispersed in the molten salt eutectic. In order to find an appropriate surfactant for synthesizing molten salt nanomaterials, three surfactants, sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), and gum arabic (GA), at 1% mass concentration with respect to the salt eutectic were added. In preparation of dehydrated nanomaterials, water was evaporated by heating vials on a hot plate. Three different temperature conditions (120, 140, and 160 °C) were employed to investigate the effect of dispersion homogeneity of the nanotubes in the base material on the specific heat capacity of the nanomaterials. It is expected that the amount of agglomerated nanotubes decreases with increase of evaporation temperature (shorter elapsed time for evaporation). The results showed that the specific heat capacity of the nanomaterials was enhanced up to 21% in liquid phase. Additionally, it was found that the specific heat capacity enhancement of the nanomaterials, which contained SDS, was more sensitive to the evaporation time. Also, it can be decided that GA is the most appropriate to disperse CNT into the aqueous salt solution. Finally, CNT dispersion was confirmed with scanning electron microscope (SEM) images for pre-DSC and post-DSC samples. Furthermore, theoretical predictions of the specific heat capacity were compared with the experimental results obtained in present study.

References

1.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1974
,
Solar Energy Thermal Processes
,
Wiley
,
New York
.
2.
Solutia Inc.
,
1999
, “
Therminol VP-1, Vapor Phase/Liquid Phase Heat Transfer Fluid
,” St. Louis, MO, Technical Bulletin 7239115B.
3.
Pacheco
,
J. E.
,
Showalter
,
S. K.
, and
Kolb
,
W. J.
,
2002
, “
Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
153
159
.10.1115/1.1464123
4.
Hasnain
,
S. M.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies, Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manage.
,
39
(
11
), pp.
1127
1138
.10.1016/S0196-8904(98)00025-9
5.
Herrmann
,
U.
, and
Kearney
,
D. W.
,
2002
, “
Survey of Thermal Energy Storage for Parabolic Trough Power Plants
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
145
152
.10.1115/1.1467601
6.
Kearney
,
D.
,
Herrmann
,
U.
,
Nava
,
P.
,
Kelly
,
B.
,
Pacheco
,
J.
,
Cable
,
R.
,
Potrovitza
,
N.
,
Blake
,
D.
, and
Price
,
H.
,
2003
, “
Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
170
176
.10.1115/1.1565087
7.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
,
1993
, “
Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of c-Al2O3, SiO2, and TiO2 Ultra-Fine Particles)
,”
Netsu Bussei
,
7
(
4
), pp.
227
233
.10.2963/jjtp.7.227
8.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, FED-Vol.
231
/MD-Vol.
66
,
D. A.
Siginer
, and
H. P.
Wang
, eds.,
ASME
, San Francisco, CA, pp.
99
105
.
9.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
,
2005
, “
Nanofluids for Thermal Transport
,”
Mater. Today
,
8
(
6
), pp.
36
44
.10.1016/S1369-7021(05)70936-6
10.
Wang
,
X.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
11.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.10.1063/1.1619206
12.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2006
, “
Effects of Nanoparticle Deposition on Surface Wettability Influencing Boiling Heat Transfer in Nanofluids
,”
Appl. Phys. Lett.
,
89
(
15
), p.
153107
.10.1063/1.2360892
13.
Kim
,
H. D.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2007
, “
Experimental Studies on CHF Characteristics of Nano-Fluids at Pool Boiling
,”
Int. J. Multiphase Flow
,
33
(
7
), pp.
691
706
.10.1016/j.ijmultiphaseflow.2007.02.007
14.
Jo
,
B.
,
Jeon
,
P. S.
,
Yoo
,
J.
, and
Kim.
,
H. J.
,
2009
, “
Wide Range Parametric Study for the Pool Boiling of Nano-Fluids With a Circular Plate Heater
,”
J. Visual.
,
12
(
1
), pp.
37
46
.10.1007/BF03181941
15.
Sathyamurthi
, V
.
,
Ahn
,
H. S.
, and
Banerjee
,
D.
,
2009
, “
Subcooled Pool Boiling Experiments on Horizontal Heaters Coated With Carbon Nanotubes
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071501
.10.1115/1.3000595
16.
Zhou
,
S.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2 O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
9
), p.
093123
.10.1063/1.2890431
17.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071601
.10.1115/1.3090813
18.
Zhou
,
L.
,
Wang
,
B.
,
Peng
,
X.
,
Du
,
X.
, and
Yang
,
Y.
,
2010
, “
On the Specific Heat Capacity of CuO Nanofluid
,”
Adv. Mech. Eng.
,
2010
(
2010
), p.
172085
.10.1155/2010/172085
19.
Nelson
, I
. C.
,
Banerjee
,
D.
, and
Ponnappan
,
R.
,
2009
, “
Flow Loop Experiments Using Polyalphaolefin Nanofluids
,”
J. Thermophys. Heat Transfer
,
23
(
4
), pp.
752
761
.10.2514/1.31033
20.
Shin
,
D.
, and
Banerjee
,
D.
,
2010
, “
Effects of Silica Nanoparticles on Enhancing the Specific Heat Capacity of Carbonate Salt Eutectic (Work in Progress)
,”
Int. J. Struct. Changes Solids
,
3
(
2
), pp.
25
31
.
21.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1064
1070
.10.1016/j.ijheatmasstransfer.2010.11.017
22.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhanced Specific Heat of Silica Nanofluid
,”
ASME J. Heat Transfer
,
133
(
2
), p.
024501
.10.1115/1.4002600
23.
Dudda
,
B.
, and
Shin
,
D.
,
2013
, “
Effect of Nanoparticle Dispersion on Specific Heat Capacity of a Binary Nitrate Salt Eutectic for Concentrated Solar Power Applications
,”
Int. J. Therm. Sci.
,
69
, pp.
37
42
.10.1016/j.ijthermalsci.2013.02.003
24.
Tiznobaik
,
H.
, and
Shin
,
D.
,
2013
, “
Enhanced Specific Heat Capacity of High-Temperature Molten Salt-Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
57
(
2
), pp.
542
548
.10.1016/j.ijheatmasstransfer.2012.10.062
25.
Hilding
,
J.
,
Grulke
,
E. A.
,
Zhang
,
Z. G.
, and
Lockwood
,
F.
,
2003
, “
Dispersion of Carbon Nanotubes in Liquids
,”
J. Dispersion Sci. Technol.
,
24
(
1
), pp.
1
41
.10.1081/DIS-120017941
26.
Janz
,
G. J.
,
Allen
,
C. B.
,
Bansal
,
N. P.
,
Murphy
,
R. M.
, and
Tomkins
,
R. P. T.
,
1979
, “
Physical Properties Data Compilations Relevant to Energy Storage—2. Molten Salts: Data on Single and Multi-Component Salt Systems
,”
Nat. Stand. Ref. Data Ser., Nat. Bur. Stand.
61
, pp.
1
442
.
27.
Araki
,
N.
,
Matsuura
,
M.
,
Makino
,
A.
,
Hirata
,
T.
, and
Kato
,
Y.
,
1988
, “
Measurement of Thermophysical Properties of Molten Salts: Mixtures of Alkaline Carbonate Salts
,”
Int. J. Thermophys.
,
9
(
6
), pp.
1071
1080
.10.1007/BF01133274
28.
ASTM E1269-05
,
2005
, “
Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry
,” American Society for Testing and Materials.
29.
Jo
,
B.
, and
Banerjee
,
D.
,
2010
, “
Study of High Temperature Nanofluids Using Carbon Nanotubes (CNT) for Solar Thermal Storage Applications
,” 4th
ASME
Paper No. ES2010-90299.10.1115/ES2010-90299
30.
Smith
,
J. M.
, and
Van Ness
,
H. C.
,
1987
, Introduction to Chemical Engineering Thermodynamics (Chem Eng Series), McGraw-Hill, New York.
31.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.10.1115/1.2150834
32.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
33.
Singh
,
N.
,
2010
, “
Computational Analysis of Thermo-Fluidic Characteristics of a Carbon Nano-Fin
,” Ph.D. dissertation, Texas A&M University, College Station, TX.
34.
Oh
,
S. H.
,
Kauffmann
,
Y.
,
Scheu
,
C.
,
Kaplan
,
W. D.
, and
Ruhle
,
M.
,
2005
, “
Ordered Liquid Aluminum at the Interface With Sapphire
,”
Science
,
310
(
5748
), pp.
661
663
.10.1126/science.1118611
35.
Kim
,
S. H.
,
Mulholland
,
G. W.
, and
Zachariah
,
M. R.
,
2009
, “
Density Measurement of Size Selected Multiwalled Carbon Nanotubes by Mobility-Mass Characterization
,”
Carbon
,
47
(
5
), pp.
1297
1302
.10.1016/j.carbon.2009.01.011
36.
Li
,
Y.
,
Qiu
,
X.
,
Yin
,
Y.
,
Yang
,
F.
, and
Fan
,
Q.
,
2009
, “
The Specific Heat of Carbon Nanotube Networks and Their Potential Applications
,”
J. Phys. D: Appl. Phys.
,
42
(
15
), p.
155405
.10.1088/0022-3727/42/15/155405
37.
Billings
,
B. H.
, and
Gray
,
D. E.
,
1972
,
American Institute of Physics Handbook
,
McGraw-Hill
,
New York
.
38.
Rodriguez-Aseguinolaza
,
J.
,
Blanco-Rodriguez
,
P.
,
Risueno
,
E.
,
Tello
,
M. J.
, and
Doppiu
,
S.
,
2014
, “
Thermodynamic Study of the Eutectic Mg49-Zn51 Alloy Used for Thermal Energy Storage
,”
J. Therm. Anal. Calorim.
,
117
(
1
), pp.
93
99
.10.1007/s10973-014-3639-0
39.
Malik
,
D.
,
2010
, “
Evaluation of Composite Alumina Nanoparticle and Nitrate Eutectic Materials for Use in Concentrating Solar Power Plants
,” M.S. thesis, Texas A&M University, College Station, TX.
You do not currently have access to this content.