A volumetric solar receiver receives the concentrated radiation generated by a large number of heliostats. Heat transfer takes place from the receiver solid phase to the air as it passes through the porous receiver. Such combined heat transfer within the receiver, associated radiation, convection and conduction, are investigated using a local thermal nonequilibrium model. The Rosseland approximation is applied to account for the radiative heat transfer through the solar receiver, while the low Mach approximation is exploited to investigate the compressible flow through the receiver. Analytic solutions are obtained for the developments of air and ceramic temperatures as well as the pressure along the flow direction. The results show that the pore diameter must be larger than its critical value to achieve high receiver efficiency. Subsequently, there exists an optimal pore diameter for achieving the maximum receiver efficiency under the equal pumping power. The solutions serve as a useful tool for designing a novel volumetric solar receiver of silicon carbide ceramic foam.

References

1.
Fend
,
T.
, 2010, “
High Porosity Materials as Volumetric Receivers for Solar Energetics
,”
Opt. Appl.
,
11
(
2
), pp.
271
284
.
2.
Alexopoulos
,
S.
, and
Hoffschmidt
,
B.
, 2010, “
Solar Tower Power Plant in Germany and Future Perspectives of the Development of the Technology in Greece and Cyprus
,”
Renewable Energy
,
35
, pp.
1352
1356
.
3.
Pitz-Paal
,
R.
,
Hoffschmidt
,
B.
,
Bohmer
,
M.
, and
Becker
,
M.
, 1997, “
Experimental and Numerical Evaluation of the Performance and Flow Stability of Different Types of Open Volumetric Absorbers Under Non-Homogeneous Irradiation
,”
Sol. Energy
,
60
, pp.
135
150
.
4.
Becker
,
M.
,
Fend
,
T.
,
Hoffschmidt
,
B.
,
Pitz-Paal
,
R.
,
Reutter
,
O.
,
Stamatov
,
V.
,
Steven
,
M.
, and
Trimis
,
D.
, 2006, “
Theoretical and Numerical Investigation of Flow Stability in Porous Materials Applied as Volumetric Solar Receiver
,”
Sol. Energy
,
80
, pp.
1241
1248
.
5.
Fend
,
T.
,
Hoffschmidt
,
B.
,
Pitz-Paal
,
R.
, and
Reutter
,
O.
, 2004, “
Porous Materials as Open Volumetric Solar Receivers: Experimental Determination of Thermophysical and Heat Transfer Properties
,”
Energy
,
29
, pp.
823
833
.
6.
Bai
,
F.
, 2010, “
One Dimensional Thermal Analysis of Silicon Carbide Ceramic Foam Used for Solar Air Receiver
,”
Int. J. Therm. Sci.
,
49
, pp.
2400
2404
.
7.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
, 2011, “
Numerical Simulation of Convective Heat Transfer Between Air Flow and Ceramic Foams to Optimize Volumetric Solar Air Receiver Performances
,”
Int. J. Heat Mass Transfer
,
54
, pp.
1527
1537
.
8.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
, 2011, “
Coupled Radiation and Flow Modeling in Ceramic Foam Volumetric Solar Air Receivers
,”
Sol. Energy
,
85
, pp.
2374
2385
.
9.
Nakayama
,
A.
,
Kuwahara
,
F.
,
Sugiyama
,
M.
, and
Xu
,
G. L.
, 2001, “
A Two-Enegy Equation Model for Conduction and Convection in Porous Media
,”
Int. J. Heat Mass Transfer
,
44
, pp.
4375
4379
.
10.
Yang
,
C.
, and
Nakayama
,
A.
, 2010, “
A Synthesis of Tortuosity and Dispersion in Effective Thermal Conductivity of Porous Media
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3222
3230
.
11.
Neuman
,
S. P.
, 1977, “
Theoretical Derivation of Darcy’s Law
,”
Acta Mech.
,
25
, pp.
153
170
.
12.
Cheng
,
P.
, 1978, “
Heat Transfer in Geothermal Systems
,”
Adv. Heat Transfer
,
14
, pp.
1
105
.
13.
Nakayama
,
A.
, 1995,
PC-Aided Numerical Heat Transfer and Convective Flow
,
CRC Press
,
Boca Raton
, pp.
103
115
.
14.
Quintard
,
M.
, and
Whitaker
,
S.
, 1993, “
One and Two Equation Models for Transient Diffusion Processes in Two-Phase Systems
,”
Adv. Heat Transfer
,
23
, pp.
369
465
.
15.
Nakayama
,
A.
,
Kuwahara
,
F.
, and
Kodama
,
Y.
, 2006, “
An Equation for Thermal Dispersion Flux Transport and its Mathematical Modelling for Heat and Fluid Flow in a Porous Medium
,”
J. Fluid Mech.
,
563
, pp.
81
96
.
16.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME Trans. J. Heat Transfer
,
121
, pp.
466
471
.
17.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME Trans. J. Heat Transfer
,
122
, pp.
557
565
.
18.
Dukhan
,
N.
, 2006, “
Correlations for the Pressure Drop for Flow Through Metal Foam
,”
Exp. Fluids
,
41
, pp.
665
672
.
19.
Kuwahara
,
F.
,
Yang
,
C.
,
Ando
,
K.
, and
Nakayama
,
A.
, 2011, “
Exact Solutions for a Thermal Non-Equilibrium Model of Fluid Saturated Porous Media Based on an Effective Porosity
,”
ASME J. Heat Transfer
,
133
(
11
), p.
112602
.
20.
Yang
,
C.
,
Ando
,
K.
, and
Nakayama
,
A.
, 2011, “
A Local Thermal Non-Equilibrium Analysis of Fully Developed Forced Convective Flow in a Tube Filled With a Porous Medium
,”
Transp. Porous Media
,
89
, pp.
237
249
.
21.
Yang
,
C.
,
Kuwahara
,
F.
,
Liu
,
W.
, and
Nakayama
,
A.
, 2011, “
Thermal Non-Equilibrium Forced Convective Flow in an Annulus Filled With a Porous Medium
,”
Open Transp. Phenom. J.
,
3
, pp.
31
39
.
22.
Nakayama
,
A.
,
Ando
,
K.
, and
Yang
,
C.
, 2009, “
A Study on Interstitial Heat Transfer in Consolidated and Unconsolidated Porous Media
,”
Heat Mass Transfer
,
45
, pp.
1365
1372
.
23.
Kamiuto
,
K.
,
Miyoshi
,
Y.
,
Kinoshita
,
I.
, and
Hasegawa
,
S.
, 1983, “
Conduction in Optically Thick Ceramic Porous Media: Radiative Heat Transfer for the Case of Cordierite Foam
,”
JSME Trans., Ser. B
,
49
, pp.
2147
2153
.
24.
Smirnova
,
O.
,
Fend
,
T.
,
Schwarzbözl
P.
, and
Schollgen
,
D.
, 2010, “
Homogeneous and Inhomogeneous Model for Flow and Heat Transfer in Porous Materials as High Temperature Solar Air Receiver
,”
Proceedings of the COMSOL Conference
, Paris, pp.
17
19
.
25.
Agrafiotis
,
C.
,
Mavroidis
,
I.
,
Konstandopoulos
,
A. G.
,
Hoffschmidt
,
B.
,
Stobbe
,
P.
,
Romero
,
M.
, and
Fernandez-Quero
,
V.
, 2007, “
Evaluation of Porous Silicon Carbide Monolithic Honeycombs as Volumetric Receivers/Collectors of Concentrated Solar Radiation
,”
Sol. Energy Mater. Sol. Cells
,
91
, pp.
474
488
.
You do not currently have access to this content.