Vibrations of a wind turbine have a negative impact on its performance. Mitigating this undesirable impact requires knowledge of the relationship between the vibrations and other wind turbine parameters that could be potentially modified. Three approaches for ranking the impact importance of measurable turbine parameters on the vibrations of the drive train and the tower are discussed. They include the predictor importance analysis, the global sensitivity analysis, and the correlation coefficient analysis versed in data mining and statistics. To decouple the impact of wind speed on the vibrations of the drive train and the tower, the analysis is performed on data sets with narrow speed ranges. Wavelet analysis is applied to filter noisy accelerometer data. To exclude the impact malfunctions on the vibration analysis, the data are analyzed in a frequency domain. Data-mining algorithms are used to build models with turbine parameters of interest as inputs, and the vibrations of drive train and tower as outputs. The performance of each model is thoroughly evaluated based on metrics widely used in the wind industry. The neural network algorithm outperforms other classifiers and is considered to be the most promising approach to study wind turbine vibrations.

1.
Ko
,
H. -S.
,
Lee
,
K. Y.
,
Kang
,
M. -J.
, and
Kim
,
H. -C.
, 2008, “
Power Quality Control of an Autonomous Wind-Diesel Power System Based on Hybrid Intelligent Controller
,”
Neural Networks
0893-6080,
21
(
10
), pp.
1439
1446
.
2.
Mutlu
,
Ö. S.
,
Akpınar
,
E.
, and
Balıkcı
,
A.
, 2009, “
Power Quality Analysis of Wind Farm Connected to Alaçati Substation in Turkey
,”
Renewable Energy
0960-1481,
34
(
5
), pp.
1312
1318
.
3.
Kusiak
,
A.
,
Zheng
,
H. -Y.
, and
Song
,
Z.
, 2009, “
Short-Term Prediction of Wind Farm Power: A Data-Mining Approach
,”
IEEE Trans. Energy Convers.
0885-8969,
24
(
1
), pp.
125
136
.
4.
Monfared
,
M.
,
Rastegar
,
H.
, and
Kojabadi
,
H. M.
, 2009, “
A New Strategy for Wind Speed Forecasting Using Artificial Intelligent Methods
,”
Renewable Energy
0960-1481,
34
(
3
), pp.
845
848
.
5.
Damousis
,
I. G.
,
Alexiadis
,
M. C.
, and
Theocharis
,
J. B.
, 2004, “
A Fuzzy Model for Wind Speed Prediction and Power Generation in Wind Parks Using Spatial Correlation
,”
IEEE Trans. Energy Convers.
0885-8969,
19
(
2
), pp.
352
361
.
6.
Barthelmie
,
R. J.
,
Frandsen
,
S. T.
,
Nielsen
,
M. N.
,
Pryor
,
S. C.
,
Rethore
,
P. -E.
, and
Jørgensen
,
H. E.
, 2007, “
Modelling and Measurements of Power Losses and Turbulence Intensity in Wind Turbine Wakes at Middelgrunden Offshore Wind Farm
,”
Wind Energy
1095-4244,
10
(
6
), pp.
517
528
.
7.
Castro Mora
,
J.
,
Barón
,
J. M. C.
,
Santos
,
J. M. R.
, and
Payán
,
M. B.
, 2007, “
An Evolutive Algorithm for Wind Farm Optimal Design
,”
Neurocomputing
0925-2312,
70
(
16–18
), pp.
2651
2658
.
8.
Kusiak
,
A.
,
Zheng
,
H. -Y.
, and
Song
,
Z.
, 2009, “
On-Line Monitoring of Power Curves
,”
Renewable Energy
0960-1481,
34
(
6
), pp.
1487
1493
.
9.
Kusiak
,
A.
,
Zheng
,
H. -Y.
, and
Song
,
Z.
, 2009, “
Models for Monitoring Wind Farm Power
,”
Renewable Energy
0960-1481,
34
(
3
), pp.
583
590
.
10.
Leithead
,
W.
, and
Connor
,
B.
, 2000, “
Control of Variable Speed Wind Turbines: Dynamic Models
,”
Int. J. Control
0020-7179,
73
(
13
), pp.
1173
1188
.
11.
Fadaeinedjad
,
R.
,
Moschopoulos
,
G.
, and
Moallem
,
M.
, 2008, “
Investigation of Voltage Sag Impact on Wind Turbine Tower Vibrations
,”
Wind Energy
1095-4244,
11
(
4
), pp.
351
375
.
12.
Murtagh
,
P. J.
,
Ghosh
,
A.
,
Basu
,
B.
, and
Broderick
,
B. M.
, 2008, “
Passive Control of Wind Turbine Vibrations Including Blade/Tower Interaction and Rotationally Sampled Turbulence
,”
Wind Energy
1095-4244,
11
(
4
), pp.
305
317
.
13.
Hau
,
E.
, 2000,
Wind-Turbines: Fundamentals, Technologies, Application and Economics
,
Springer
,
New York
.
14.
Fernando
,
D. B.
,
Hernán
,
D. B.
, and
Ricardo
,
J. M.
, 2007,
Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design
,
Springer
,
London, UK
.
15.
Friedman
,
J. H.
, 1999,
Stochastic Gradient Boosting
,
Department of Statistics, Stanford University
,
Stanford, CA
.
16.
Friedman
,
J. H.
, 2001, “
Greedy Function Approximation: A Gradient Boosting Machine
,”
Ann. Stat.
0090-5364,
29
, pp.
1189
1232
.
17.
Siegelmann
,
H. T.
, and
Sontag
,
E. D.
, 1994, “
Analog Computation via Neural Networks
,”
Theor. Comput. Sci.
0304-3975,
131
(
2
), pp.
331
360
.
18.
Cybenko
,
G. V.
, 1989, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signals, Syst.
0932-4194,
2
, pp.
303
314
.
19.
Smith
,
M.
, 1993,
Neural Networks for Statistical Modeling
,
Van Nostrand Reinhold
,
New York
.
20.
Fisher
,
R. A.
, 1915, “
Frequency Distribution of the Values of the Correlation Coefficient in Samples From an Indefinitely Large Population
,”
Biometrika
0006-3444,
10
, pp.
507
521
.
21.
Wowk
,
V.
, 1991,
Machinery Vibration: Measurement and Analysis
,
McGraw-Hill
,
New York
.
22.
Schölkopf
,
B.
,
Burges
,
C. J. C.
, and
Smola
,
A. J.
, 1999,
Advances in Kernel Methods: Support Vector Learning
,
MIT
,
Cambridge, MA
.
23.
Steinwart
,
I.
, and
Christmann
,
A.
, 2008,
Support Vector Machines
,
Springer-Verlag
,
New York
.
24.
Breiman
,
L.
, 2001, “
Random Forests
,”
Mach. Learn.
0885-6125,
45
, pp.
5
32
.
You do not currently have access to this content.