In this paper we propose a novel CO2-recovering hybrid solar-fossil combined cycle with the integration of methane-fueled chemical-looping combustion, and investigate the system with the aid of the Energy-Utilization Diagram (EUD). Chemical-looping combustion (CLC) consists of two successive reactions: first, methane fuel is oxidized by metal oxide(NiO)as an oxygen carrier (reduction of metal oxide); and second, the reduced metal (Ni) is successively oxidized by combustion air (the oxidation of metal). The oxidation of methane with NiO requires a relative low-grade thermal energy at 300°C-500°C. Then concentrated solar thermal energy at approximately 450°C-550°C can be utilized to provide the process heat for this reaction. By coupling solar thermal energy with methane-fueled chemical-looping combustion, the energy level of solar thermal energy at around 450°C-550°C can be upgraded to the chemical energy of solid fuel Ni for better utilization of solar energy to generate electricity. The synergistic integration of solar thermal energy and chemical-looping combustion could make the exergy efficiency and the net solar-to-electric efficiency of the solar hybrid system more than 60% and 30%, respectively, at a turbine inlet temperature (TIT) of 1200°C. At the same time, this new system has an extremely important advantage of directly suppressing the environmental impact due to lack of energy penalty for CO2 recovery. Approximately 9–15 percentage points higher efficiency can be achieved compared to the conventional natural gas-fired combined cycle with CO2 separation. The results obtained here are promising and indicate that this novel solar hybrid combined cycle offers the new possibility of CO2 mitigation using both green energy and fossil fuels. These results also provide a new approach for highly efficient use of solar thermal energy to generate electricity.

1.
Fletcher
,
E. A.
, 2001, “
Solarthermal Processing: A Review
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
63
74
.
2.
Tamaura
,
Y.
,
Wada
,
Y.
,
Yoshida
,
T.
, and
Tsuji
,
M.
, 1997, “
The Coal/Fe3O4 System for Mixing of Solar and Fossil Energies
,”
Energy
0360-5442,
22
(
2-3
), pp.
337
342
.
3.
Steinfeld
,
A.
, and
Palumbo
,
R.
, 2001, “
Solar Thermochemical Process Technology
,”
Encyclopedia of Physical Science and Technology
, edited by
R. A.
Meyers
,
Academic
,
New York
, Vol.
15
, pp.
237
256
.
4.
Steinfeld
,
A.
,
Frei
,
A.
,
Kuhn
,
P.
, and
Wuillemin
,
D.
, 1995, “
Solar Thermal Production of Zinc and Syngas VIA Combined ZnO-Reduction and CH4- Reforming Process
,”
Int. J. Hydrogen Energy
0360-3199,
20
, pp.
793
804
.
5.
Steinfeld
,
A.
, 1996, “
Thermodynamic Analysis of the Co-Production of Zinc and Synthesis Gas Using Solar Process Heat
,”
Energy
0360-5442,
21
, pp.
205
222
.
6.
Werder
,
M.
, and
Steinfeld
,
A.
, 2000, “
Life Cycle Assessment of the Conventional and Solar Thermal Production of Zinc and Synthesis Gas
,”
Energy
0360-5442,
25
, pp.
395
409
.
7.
Tamme
,
R.
,
Buck
,
R.
,
Epstein
,
M.
,
Fisher
,
U.
, and
Sugarmen
,
C.
, 2001, “
Solar Upgrading of Fuels for Generation of Electricity
,”
ASME J. Sol. Energy Eng.
0199-6231,
123
, pp.
160
163
.
8.
Hong
,
H.
,
Jin
,
H.
,
Ji
,
J.
,
Wang
,
Z.
, and
Cai
,
R.
, 2005, “
Solar Thermal Power Cycle With Integration of Methanol Decomposition and Middle-Temperature Solar Thermal Energy
,”
J. Sol. Ener.
,
78
, pp.
49
58
.
9.
Goswami
,
D. Y.
, 1998, “
Solar Thermal Power Technology: Present Status and Ideas for the Future
,”
J. Extract. Conv., Enviorn.
,
20
, pp.
137
145
.
10.
Ishida
,
M.
, and
Jin
,
H.
, 1994, “
A New Advanced Power-Generation System Using Chemical-Looping Combustion
,”
Int. J. Energy Res.
0363-907X,
19
, pp.
415
422
.
11.
Jin
,
H.
, and
Ishida
,
M.
, 2000, “
A Novel Gas Turbine Cycle With Hydrogen-Fueled Chemical-Looping Combustion
,”
Int. J. Hydrogen Energy
0360-3199,
25
, pp.
1209
1215
.
12.
Jin
,
H.
, and
Ishida
,
M.
, 2004, “
A New Type of Coal Gas Fueled Chemical Looping Combustion
,”
Fuel
0016-2361,
83
, pp.
2411
2417
.
13.
Ishida
,
M.
,
Jin
,
H.
, and
Okamoto
,
T.
, 1996, “
A Fundamental Study of a New Kind of Medium Material for Chemical-Looping Combustion
,” American Chemical Society (ACS),
Energy Fuels
0887-0624,
10
, pp.
958
963
.
14.
Jin
,
H.
,
Okamoto
,
T.
, and
Ishida
,
M.
, 1999, “
Development of a Novel Chemical-Looping Combustion: Synthesis of a Solid Looping Material of NiO∕NiAl2O4
,” American Chemical Society (ACS),
Ind. Eng. Chem. Res.
0888-5885,
38
, pp.
126
132
.
15.
Jin
,
H.
, and
Ishida
,
M.
, 2001, “
Reactivity Study on a Novel Hydrogen Fueled Chemical-Looping Combustion
,”
Int. J. Hydrogen Energy
0360-3199,
26
, pp.
889
894
.
16.
Ishida
,
M.
, and
Jin
,
H.
, 2001, “
Fundamental Study on New Gas Turbine Cycle
,”
ASME J. Energy Resour. Technol.
0195-0738,
123
, pp.
10
14
.
17.
Naqvi
,
R.
,
Bolland
,
O.
,
Brandvoll
,
Ø.
, 2004, “
Chemical-Looping Combustion Analysis of Natural Gas Fired Power Cycles With Inherent CO2 Capture
,”
Proc. ASME TURBO EXPO 2004
,
Vienna, Austria
, 2004, pp.
14
17
.
18.
Anheden
,
M.
, and
Svedberg
,
G.
, 1998, “
Exergy Analysis of Chemical Looping Combustion Systems
,”
Energy Convers. Manage.
0196-8904,
39
, pp.
1967
1980
.
19.
Cho
,
P.
,
Mattisson
,
T.
, and
Lyngfelt
,
A.
, 2004, “
Comparison of Iron, Nickel, Copper, and Manganese-Based Oxygen Carriers for Chemical-Looping Combustion
,”
Fuel
0016-2361,
83
, pp.
1215
1225
.
20.
Copeland
,
R. J.
,
Alptekin
,
G.
,
Cesario
,
M.
,
Gebhard
,
S.
, and
Gershanovich
,
Y.
, 2001, “
Report of United States Department
,” DE, 2001–775509.
21.
Sargent & Lundy LLC Consulting Group
. Assessment Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts, Sub Concentrator Report, 2003, NREL/SR-550–34440.
22.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
, 2002, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
, pp.
109
125
.
23.
Buck
,
R.
,
Bräuning
,
T.
,
Denk
,
T.
,
Pfänder
,
M.
,
Schwarzbözl
,
P.
, and
Tellez
,
F.
, 2002, “
Solar-Hybrid Gas Turbine-Based Power Tower Systems (REFOS)
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
, pp.
2
9
.
24.
Kribus
,
A.
,
Krupkin
,
V.
,
Yogev
,
A.
, and
Sprikl
,
W.
, 1998, “
Performance Limits of Heliostat Fields
,”
ASME J. Sol. Energy Eng.
0199-6231,
120
, pp.
240
246
.
25.
Ishida
,
M.
, and
Kawamura
,
K.
, 1982, “
Energy and Exergy Analysis of a Chemical Process System With Distributed Parameters Based on the Energy-Direction Factor Diagram
,”
Ind. Eng. Chem. Process Des. Dev.
0196-4305,
21
, pp.
690
695
.
26.
Lyngfelt
,
A.
,
Leckner
,
B.
, and
Mattisson
,
T.
, 2001, “
A Fluidized-Bed Combustion Process With Inherent CO2 Separation; Application of Chemical-Looping Combustion Comparison
,”
Chem. Eng. Sci.
0009-2509,
56
, pp.
3101
3113
.
27.
Jin
,
H.
,
Hong
,
H.
,
Wang
,
B.
,
Han
,
W.
, and
Lin
,
R.
, 2005, “
A New Principle of Synthetic Cascade Utilization of Chemical Energy and Physical Energy
,”
J. Sci. China Ser. E Eng. & Mat. Sci.
,
48
(, pp.
163
179
.
28.
Riemer
,
P.
, 1996, “
Greenhouse Gas Mitigation Technologies, an Overview of the CO2 Capture, Storage, and Future Activities of the IEA Greenhouse Gas R&D Program
,”
Energy Convers. Manage.
0196-8904,
37
, pp.
665
670
.
You do not currently have access to this content.