Abstract

Since the last decade, gearbox systems have been requiring increasing power, and consequently, the complexity of systems has escalated. Inevitably, this complexity has resulted in the need for the troubleshooting of gearbox systems. With a growing trend of health monitoring in rotating machines, diagnostic and prognostic studies have become focused on diagnosing existing and potential failures in gearbox systems. In this context, this study develops the architecture of the cloud-based cyber-physical system (CPS) for condition monitoring of gearbox. Empirically collected vibration signals of gear wear at various time intervals are processed using empirical mode decomposition (EMD) algorithm. A Euclidian-based distance evaluation technique is applied to select the most sensitive features of car gear wear. Artificial neural network (ANN) is trained using extracted features to monitor the gearbox for the future dataset. Comparison of the performance results revealed that the ANN is superior to the other EMD methods. The present methodology was found efficient and reliable for condition monitoring of industrial gearbox.

References

1.
Rajkumar
,
R.
,
Lee
,
I.
,
Sha
,
L.
, and
Stankovic
,
J.
,
2010
, “
Cyber-Physical Systems: The Next Computing Revolution
,”
47th ACM/IEEE Design Automation Conference
,
Anaheim, CA
, June 13–18, pp.
731
736
.10.1145/1837274.1837461
2.
Manyika
,
J.
,
Chui
,
M.
,
Bisson
,
P.
,
Woetzel
,
J.
,
Dobbs
,
R.
,
Bughin
,
J.
, and
Aharon
,
D.
,
2015
, “
The Internet of Things: Mapping the Value Beyond the Hype
,”
McKinsey Global Institute, University of Pennsylvania
, p.
144
.
3.
Heinrichs
,
W.
,
2005
, “
Do It Anywhere
,”
Electron. Syst. Software
,
3
(
4
), pp.
30
33
.10.1049/ess:20050405
4.
VenkateshOdendahl
,
S.
,
Xu
,
D.
,
Michaloski
,
X.
,
Proctor
,
J.
, and
Kramer
,
F. T.
,
2005
, “
Validating Portability of STEP-NC Tool Center Programming
,”
ASME Paper No. DETC2005-84870
. 10.1115/DETC2005-84870
5.
Manenti
,
P.
,
2011
, “
Building the GlobalCars of the Future
,”
Managing Autom.
,
26
(
1
), pp.
8
14
.
6.
Lee
,
J.
,
Ardakani
,
H. D.
,
Yang
,
S.
, and
Bagheri
,
B.
,
2015
, “
Industrial Big Data Analytics and Cyber-Physical Systems for Future Maintenance & Service Innovation
,”
Procedia CIRP
,
38
, pp.
3
7
.10.1016/j.procir.2015.08.026
7.
Jardine
,
A. K. S.
,
Lin
,
D.
, and
Banjevic
,
D.
,
2006
, “
A Review on Machinery Diagnostics and Prognostics Implementing Condition-Based Maintenance
,”
Mech. Syst. Signal Process
,
20
(
7
), pp.
1483
1510
.10.1016/j.ymssp.2005.09.012
8.
Shi
,
J.
,
Wan
,
J.
,
Yan
,
H.
, and
Suo
,
H.
,
2011
, “
A Survey of Cyber-Physical Systems
,”
International Conference on Wireless Communications and Signal Processing (WCSP)
,
Hangzhou, China
, Nov. 9–11, pp.
1
11
.10.1109/WCSP.2011.6096958
9.
Elasha
,
F.
,
Mba
,
D.
, and
Ruiz-Carcel
,
C.
,
2015
, “
Pitting Detection in Worm Gearboxes With Vibration Analysis
,”
Mech. Mach. Sci.
,
42
, pp.
231
241
. 10.1007/978-3-319-09918-7
10.
Van Hecke
,
B.
,
Yoon
,
J.
, and
He
,
D.
,
2016
, “
Low Speed Bearing Fault Diagnosis Using Acoustic Emission Sensors
,”
Appl. Acoust.
,
105
, pp.
35
44
.10.1016/j.apacoust.2015.10.028
11.
Touret
,
T.
,
Changenet
,
C.
,
Ville
,
F.
,
Lalmi
,
M.
, and
Becquerelle
,
S.
,
2018
, “
On the Use of Temperature for Online Condition Monitoring of Geared Systems—A Review
,”
Mech. Syst. Signal Process.
,
101
, pp.
197
210
.10.1016/j.ymssp.2017.07.044
12.
Gritli
,
Y.
,
Bellini
,
A.
,
Rossi
,
C.
,
Casadei
,
D.
,
Filippetti
,
F.
, and
Capolino
,
G.-A.
,
2017
, “
Condition Monitoring of Mechanical Faults in Induction Machines From Electrical Signatures: Review of Different Techniques
,”
IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives
,
Tinos, Greece
, Aug. 29–Sept. 1, pp.
77
84
.10.1109/DEMPED.2017.8062337
13.
Kirk
,
T. B.
,
Panzera
,
D.
,
Anamalay
,
R. V.
, and
Xu
,
Z. L.
,
1995
, “
Computer Image Analysis of Wear Debris for Machine Condition Monitoring and Fault Diagnosis
,”
Wear
,
181–183
, pp.
717
722
.10.1016/0043-1648(94)07071-7
14.
Sheng
,
S.
,
2016
, “
Monitoring of Wind Turbine Gearbox Condition Through Oil and Wear Debris Analysis: A Full-Scale Testing Perspective
,”
Tribol. Trans.
,
59
(
1
), pp.
149
162
.10.1080/10402004.2015.1055621
15.
Loutridis
,
S. J.
,
2008
, “
Gear Failure Prediction Using Multiscale Local Statistics
,”
Eng. Struct.
,
30
(
5
), pp.
1214
1223
.10.1016/j.engstruct.2007.07.022
16.
Halim
,
E. B.
,
Shoukat Choudhury
,
M. A. A.
,
Shah
,
S. L.
, and
Zuo
,
M. J.
,
2008
, “
Time-Domain Averaging Across All Scales: A Novel Method for Detection of Gearbox Faults
,”
Mech. Syst. Signal Process.
,
22
(
2
), pp.
261
278
.10.1016/j.ymssp.2007.08.006
17.
Fakhfakh
,
T.
,
Chaari
,
F.
, and
Haddar
,
M.
,
2005
, “
Numerical and Experimental Analysis of a Gear System With Teeth Defects
,”
Int. J. Adv. Manuf. Technol.
,
25
(
5–6
), pp.
542
550
.10.1007/s00170-003-1830-8
18.
Choy
,
F. K.
,
Mugler
,
D. H.
, and
Zhou
,
J.
,
2003
, “
Damage Identification of a Gear Transmission Using Vibration Signatures
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
394
403
.10.1115/1.1564571
19.
Fan
,
X.
, and
Zuo
,
M. J.
,
2006
, “
Gearbox Fault Detection Using Hilbert and Wavelet Packet Transform
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
966
982
.10.1016/j.ymssp.2005.08.032
20.
He
,
Q.
,
Feng
,
Z.
, and
Kong
,
F.
,
2007
, “
Detection of Signal Transients Using Independent Component Analysis and Its Application in Gearbox Condition Monitoring
,”
Mech. Syst. Signal Process.
,
21
(
5
), pp.
2056
2071
.10.1016/j.ymssp.2006.09.003
21.
Tumer
,
I. Y.
, and
Huff
,
E. M.
,
2003
, “
Analysis of Triaxial Vibration Data for Health Monitoring of Helicopter Gearboxes
,”
ASME J. Vib. Acoust.
,
125
(
1
), pp.
120
128
.10.1115/1.1526130
22.
Raad
,
A.
,
Antoni
,
J.
, and
Sidahmed
,
M.
,
2008
, “
Indicators of Cyclostationarity: Theory and Application to Gear Fault Monitoring
,”
Mech. Syst. Signal Process.
,
22
(
3
), pp.
574
587
.10.1016/j.ymssp.2007.09.011
23.
Chen
,
J.
,
Li
,
Z.
,
Pan
,
J.
,
Chen
,
G.
,
Zi
,
Y.
,
Yuan
,
J.
,
Chen
,
B.
, and
He
,
Z.
,
2016
, “
Wavelet Transform Based on Inner Product in Fault Diagnosis of Rotating Machinery: A Review
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
1
35
.10.1016/j.ymssp.2015.08.023
24.
Duan
,
F.
,
Elasha
,
F.
,
Greaves
,
M.
, and
Mba
,
D.
,
2016
, “
Helicopter Main Gearbox Bearing Defect Identification With Acoustic Emission Techniques
,”
IEEE International Conference on Prognostics and Health Management (ICPHM)
,
Ottawa, ON, Canada
, June 20–22.10.1109/ICPHM.2016.7542856
25.
Huang
,
N.
,
Shen
,
Z.
,
Long
,
S.
,
Wu
,
M.
,
Shih
,
H.
,
Zheng
,
Q.
,
Yen
,
N.
,
Tung
,
C.
, and
Liu
,
H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. A
,
454
(
1971
), pp.
903
995
.10.1098/rspa.1998.0193
26.
Chen
,
Q.
,
Huang
,
N.
,
Riemenschneider
,
S.
, and
Xu
,
Y.
,
2006
, “
A B-Spline Approach for Empirical Mode Decompositions
,”
Adv. Comput. Math.
,
24
(
1–4
), pp.
171
195
.10.1007/s10444-004-7614-3
27.
Peel
,
M. C.
,
McMahon
,
T. A.
, and
Pegram
,
G. G. S.
,
2009
, “
Assessing the Performance of Rational Spline-Based Empirical Mode Decomposition Using a Global Annual Precipitation Dataset
,”
Proc. R. Soc. A
,
465
(
2106
), pp.
1919
1937
.10.1098/rspa.2008.0352
28.
Frei
,
M. G.
, and
Osorio
,
I.
,
2007
, “
Intrinsic Time-Scale Decomposition: Time-Frequency–Energy Analysis and Real-Time Filtering of Non-Stationary Signals
,”
Proc. R. Soc. A
,
463
(
2078
), pp.
321
342
.10.1098/rspa.2006.1761
29.
Loutridis
,
S. J.
,
2004
, “
Damage Detection in Gear Systems Using Empirical Mode Decomposition
,”
Eng. Struct.
,
26
(
12
), pp.
1833
1841
.10.1016/j.engstruct.2004.07.007
30.
Samanta
,
B.
,
2004
, “
Gear Fault Detection Using Artificial Neural Networks and Support Vector Machines With Genetic Algorithms
,”
Mech. Syst. Signal Process.
,
18
(
3
), pp.
625
644
.10.1016/S0888-3270(03)00020-7
31.
Kang
,
Y.
,
Wang
,
C. C.
, and
Chang
,
Y. P.
,
2007
,
Analysis and Design of Intelligent Systems Using Soft Computing Techniques
,
Springer
,
Berlin
.
32.
Abu-Mahfouz
,
I. A.
,
2005
, “
A Comparative Study of Three Artificial Neural Networks for the Detection and Classification of Gear Faults
,”
Int. J. Gen. Syst.
,
34
(
3
), pp.
261
277
.10.1080/03081070500065726
33.
Wuxing
,
L.
,
Tse
,
P. W.
,
Guicai
,
Z.
, and
Tielin
,
S.
,
2004
, “
Classification of Gear Faults Using Cumulants and the Radial Basis Function Network
,”
Mech. Syst. Signal Process.
,
18
(
2
), pp.
381
389
.10.1016/S0888-3270(03)00080-3
34.
Lei
,
Y.
, and
Zuo
,
M. J.
,
2009
, “
Gear Crack Level Identification Based on Weighted K Nearest Neighbor Classification Algorithm
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1535
1547
.10.1016/j.ymssp.2009.01.009
35.
Cerrada
,
M.
,
Zurita
,
G.
,
Cabrera
,
D.
,
Sánchez
,
R.-V.
,
Artés
,
M.
, and
Li
,
C.
,
2016
, “
Fault Diagnosis in Spur Gears Based on Genetic Algorithm and Random Forest
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
87
103
.10.1016/j.ymssp.2015.08.030
36.
Bansal
,
S.
,
Sahoo
,
S.
,
Tiwari
,
R.
, and
Bordoloi
,
D. J.
,
2013
, “
Multiclass Fault Diagnosis in Gears Using Support Vector Machine Algorithms Based on Frequency Domain Data
,”
Measurements
,
46
(
9
), pp.
3469
3481
.10.1016/j.measurement.2013.05.015
37.
Öztürk
,
H.
,
Sabuncu
,
M.
, and
Yesilyurt
,
I.
,
2008
, “
Early Detection of Pitting Damage in Gears Using Mean Frequency of Scalogram
,”
J. Vib. Control
,
14
(
4
), pp.
469
484
.10.1177/1077546307080026
38.
Schoen
,
R. R.
,
Lin
,
B. K.
,
Habetler
,
T. G.
,
Schlag
,
J. H.
, and
Farag
,
S.
,
1995
, “
An Unsupervised, on-Line System for Induction Motor Fault Detection Using Stator Current Monitoring
,”
IEEE Trans. Ind. Appl.
,
31
(
6
), pp.
1280
1286
.10.1109/28.475698
39.
Yang
,
B. S.
,
Han
,
T.
, and
An
,
J. L.
,
2004
, “
ART-KOHONEN Neural Network for Fault Diagnosis of Rotating Machinery
,”
Mech. Syst. Signal Process.
,
18
(
3
), pp.
645
657
.10.1016/S0888-3270(03)00073-6
40.
Mba
,
C. U.
,
Makis
,
V.
,
Marchesiello
,
S.
,
Fasana
,
A.
, and
Garibaldi
,
L.
,
2018
, “
Condition Monitoring and State Classification of Gearboxes Using Stochastic Resonance and Hidden Markov Models
,”
Measurements
,
126
, pp.
76
95
.10.1016/j.measurement.2018.05.038
41.
Kumar
,
A.
,
Gandhi
,
C. P.
,
Zhou
,
Y.
,
Kumar
,
R.
, and
Xiang
,
J.
,
2020
, “
Latest Developments in Gear Defect Diagnosis and Prognosis: A Review
,”
Measurements
,
158
, p.
107735
.10.1016/j.measurement.2020.107735
42.
Yang
,
B. S.
, and
Kim
,
K. J.
,
2006
, “
Application of Dempster-Shafer Theory in Fault Diagnosis of Induction Motors Using Vibration and Current Signals
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
403
420
.10.1016/j.ymssp.2004.10.010
43.
Poojara
,
S. R.
,
Dharwadkar
,
N. V.
, and
Ghule
,
V.
, “
PerformanceBenchmarking of Hypervisors—A Case Study Indian
,”
J. Sci. Technol.
,
10
(
44
), pp.
1
11
.10.17485/ijst/2017/v10i44/120579
44.
Dharwadkar
,
N. V.
,
Poojara
,
S. R.
, and
Kadam
,
P. M.
,
2018
, “
Fault-Tolerant and Optimal Task Clustering for Scientific Workflow in Cloud
,”
Int. J. Cloud Appl. Comput.
,
8
(
3
), pp.
1
19
.
45.
BuyyaBroberg
,
R.
, and
Goscinski
,
J. A.
,
Cloud Computing Principles and Paradigms
,
Wiley
,
Hoboken, NJ
.
46.
Dharwadkar
,
N. V.
,
Savakar
,
D. G.
,
Panchal
,
S. S.
,
Javaji
,
A. A.
, and
Rathod
,
S. R.
,
2011
, “
Effect of Water on Neural-Network-Based Soil Image Recognizer and Classifier
,”
Proc. SPIE
8009
, p.
80092A
.10.1117/12.896156
47.
Dharwadkar
,
N. V.
, and
Patil
,
P. S.
,
2018
, “
Customer Retention and Credit Risk Analysis Using ANN, SVM and DNN
,”
Int. J. Soc. Syst. Sci.
,
10
(
4
), pp.
316
332
.10.1504/IJSSS.2018.095601
48.
Dharwadkar
,
N. V.
, and
Savvashe
,
A. K.
,
2021
, “
Right Ventricle Segmentation of Magnetic Resonance Image Using the Modified Convolutional Neural Network
,”
Arabian J. Sci. Eng.
,
46
, pp.
3713
3722
.10.1007/s13369-020-05309-5
49.
Dharwadkar
,
N. V.
, and
Arage
,
S. S.
,
2018
, “
Prediction and Estimation of Civil Construction Cost Using Linear Regression and Neural Network
,”
Int. J. Intell. Syst. Des. Comput.
,
2
(
1
), pp.
28
44
.10.1504/IJISDC.2018.092554
50.
Salunkhe
,
V. S.
,
Patil
,
S. K.
, and
Desavale
,
R. G.
,
2021
, “
An Intelligent Prediction for Detecting Bearing Vibration Characteristics Using Machine Learning Model
,”
ASME J. Nondestr. Eval.
,
4
(
3
), p.
031004
.10.1115/1.4049938
51.
Patil
,
S. M.
,
Desavale
,
R. G.
, and
Kumbhar
,
S. G.
, “
Roller Element Bearing Fault Size Estimation Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
,”
ASME J. Risk Uncertainty, Part B
,
7
(
1
), p.
011001
.10.1115/1.4048656
52.
Kanai
,
R. A.
,
Desavale
,
R. G.
, and
Chavan
,
S. P.
,
2016
, “
Experimental Based Faults Diagnosis of Rolling Bearings Using Artificial Neural Network
,”
ASME J. Tribol.
,
138
(
3
), p.
031103
.10.1115/1.4032525
53.
S. G.
,
Kumbhar
,
E.
, and
Sudhagar
,
P.
,
2020
, “
An Integrated Approach of Adaptive Neuro-Fuzzy Inference System and Dimension Theory for Diagnosis of Rolling Element Bearing
,”
Measurements
,
166
, p.
108266
.10.1016/j.measurement.2020.108266
You do not currently have access to this content.