Abstract

The growing complexity of equipment and systems has motivated the search for automated methods of fault diagnosis. Fault diagnosis represents the process of identifying the origin of a fault through the observation of a series of effects that it causes in the system. The method proposed in this paper for system fault diagnosis takes advantage of two very different techniques: Bayesian networks (BN) and systems modeling language (SysML). SysML allows the modeling of requirements, structure, behavior and parameters to provide a robust description of a system, its components, and its environment. This system model is used, in the proposed method, to obtain the BN graph in a novel structured procedure. The BN graph obtained must, in turn, present the components that are most likely responsible for a certain fault of the system under study. The BN model uses components reliabilities to solve the diagnosis problem. A case study of a water storage system is presented and it shows how the method can contribute to an assessment of the monitoring process of a system even in the early stages of its design. With this kind of information, the designer can assess the need for changes in the system to make it more reliable or better monitored.

References

1.
Mobley
,
R. K.
,
2002
,
An Introduction to Predictive Maintenance
, 2nd ed.,
Butterworth-Heinemann
,
Woburn, MA
.
2.
Papadopoulos
,
Y.
, and
McDermid
,
J.
,
2001
, “
Automated Safety Monitoring: A Review and Classification of Methods
,”
Int. J. Cond. Monit. Diagn. Eng. Manag.
,
4
(
4
), pp.
1
32
.https://www.researchgate.net/publication/228784850_Automated_safety_monitoring_A_review_and_classification_of_methods
3.
Venkatasubramanian
,
V.
,
Rengaswamy
,
R.
,
Kavuri
,
S. N.
, and
Yin
,
K.
,
2003
, “
A Review of Process Fault Detection and Diagnosis—Part I: Quantitative Model Based Methods
,”
Comput. Chem. Eng.
,
27
(
3
), pp.
293
311
.10.1016/S0098-1354(02)00160-6
4.
Lampis
,
M.
,
2010
,
Application of Bayesian Belief Networks to System Fault Diagnostics
,
Loughborough University
, Loughborough, UK.
5.
Neapolitan
,
R. E.
,
2004
,
Learning Bayesian Networks
, 1st ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
6.
Delligatti
,
L.
,
2013
,
SysML Distilled: A Brief Guide to the Systems Modeling Language
, 1st ed.,
Pearson Education
, Upper Saddle River, NJ.
7.
Cai
,
B.
,
Huang
,
L.
, and
Xie
,
M.
,
2017
, “
Bayesian Networks in Fault Diagnosis
,”
IEEE Trans. Ind. Inf.
, 13(5), pp.
2227
2240
.10.1109/TII.2017.2695583
8.
Isermann
,
R.
,
2011
, “
Fault-Diagnosis Applications - Model-Based Condition Monitoring: Actuators
,”
Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems
, 1st ed.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg, Germany
. 10.1007/978-3-642-12767-0
9.
Chen
,
Q.
,
Ahmed
,
Q.
,
Rizzoni
,
G.
,
Frisk
,
E.
, and
Zhai
,
H.
,
2015
, “
Model-Based Fault Diagnosis of an Automated Manual Transmission Shifting Actuator
,”
IFAC-PapersOnLine
,
28
(
21
), pp.
1479
1484
.10.1016/j.ifacol.2015.09.733
10.
Zhang
,
J.
,
Rizzoni
,
G.
,
Cordoba-Arenas
,
A.
,
Amodio
,
A.
, and
Aksun-Guvenc
,
B.
,
2017
, “
Model-Based Diagnosis and Fault Tolerant Control for Ensuring Torque Functional Safety of Pedal-by-Wire Systems
,”
Control Eng. Pract
,
61
, pp.
255
269
.10.1016/j.conengprac.2016.11.017
11.
Henry
,
D.
,
Peuvedic
,
C. L.
,
Strippoli
,
L.
, and
Ankersen
,
F.
,
2015
, “
Robust Model-Based Fault Diagnosis of Thruster Faults in Spacecraft
,”
IFAC-PapersOnLine
,
28
(
21
), pp.
1078
1083
.10.1016/j.ifacol.2015.09.670
12.
Mulumba
,
T.
,
Afshari
,
A.
,
Yan
,
K.
,
Shen
,
W.
, and
Norford
,
L. K.
,
2015
, “
Robust Model-Based Fault Diagnosis for Air Handling Units
,”
Energy Build.
,
86
, pp.
698
707
.10.1016/j.enbuild.2014.10.069
13.
Dey
,
S.
,
Biron
,
Z. A.
,
Tatipamula
,
S.
,
Das
,
N.
,
Mohon
,
S.
,
Ayalew
,
B.
, and
Pisu
,
P.
,
2016
, “
Model-Based Real-Time Thermal Fault Diagnosis of Lithium-Ion Batteries
,”
Control Eng. Pract.
,
56
, pp.
37
48
.10.1016/j.conengprac.2016.08.002
14.
Chen
,
Z.
,
Xiong
,
R.
,
Tian
,
J.
,
Shang
,
X.
, and
Lu
,
J.
,
2016
, “
Model-Based Fault Diagnosis Approach on External Short Circuit of Lithium-Ion Battery Used in Electric Vehicles
,”
Appl. Energy
,
184
, pp.
365
374
.10.1016/j.apenergy.2016.10.026
15.
Gao
,
Z.
,
Cecati
,
C.
, and
Ding
,
S. X.
,
2015
, “
A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis Model-Based and Signal-Based Approaches
,”
IEEE Trans. Ind. Electron.
,
62
(
6
), pp.
3757
3767
.10.1109/TIE.2015.2417501
16.
Chen
,
H.
, and
Lu
,
S.
,
2013
, “
Fault Diagnosis Digital Method for Power Transistors in Power Converters of Switched Reluctance Motors
,”
IEEE Trans. Ind. Electron.
,
60
(
2
), pp.
749
763
.10.1109/TIE.2012.2207661
17.
Freire
,
N. M. A.
,
Estima
,
J. O.
, and
Marques Cardoso
,
A. J.
,
2013
, “
Open-Circuit Fault Diagnosis in PMSG Drives for Wind Turbine Applications
,”
IEEE Trans. Ind. Electron.
,
60
(
9
), pp.
3957
3967
.10.1109/TIE.2012.2207655
18.
Feng
,
Z.
, and
Zuo
,
M. J.
,
2013
, “
Fault Diagnosis of Planetary Gearboxes Via Torsional Vibration Signal Analysis
,”
Mech. Syst. Signal Process
,
36
(
2
), pp.
401
421
.10.1016/j.ymssp.2012.11.004
19.
Hong
,
L.
, and
Dhupia
,
J. S.
,
2014
, “
A Time Domain Approach to Diagnose Gearbox Fault Based on Measured Vibration Signals
,”
J. Sound Vib.
,
333
(
7
), pp.
2164
2180
.10.1016/j.jsv.2013.11.033
20.
Gao
,
Z.
,
Cecati
,
C.
, and
Ding
,
S. X.
,
2015
, “
A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part II: Fault Diagnosis With Knowledge-Based and Hybrid/Active Approaches
,”
IEEE Trans. Ind. Electron.
,
62
(
6
), pp.
3768
3774
.10.1109/TIE.2015.2419013
21.
Mostafa
,
S. A.
,
Ahmad
,
M. S.
,
Mohammed
,
M. A.
, and
Obaid
,
O. I.
,
2012
, “
Implementing an Expert Diagnostic Assistance System for Car Failure and Malfunction
,”
Int. J. Comput. Sci. Issues
,
9
(
2
), pp.
1
7
.https://www.ijcsi.org/contents.php?volume=9&&issue=2
22.
Nan
,
C.
,
Khan
,
F.
, and
Iqbal
,
M. T.
,
2008
, “
Real-Time Fault Diagnosis Using Knowledge-Based Expert System
,”
Process Saf. Environ. Prot
,
86
(
1
), pp.
55
71
.10.1016/j.psep.2007.10.014
23.
Toffolo
,
A.
, and
Lazzaretto
,
A.
,
2008
, “
Energy System Diagnosis by a Fuzzy Expert System With Genetically Evolved Rules
,”
Int. J. Thermodyn.
,
11
(
3
), pp.
115
121
.https://dergipark.org.tr/en/pub/ijot/issue/5769
24.
Case
,
K.
,
Nor
,
A.
, and
Teoh
,
P. C.
,
2010
, “
A Diagnostic Service Tool Using FMEA
,”
Int. J. Comput. Integr. Manuf
,
23
(
7
), pp.
640
654
.10.1080/0951192X.2010.486007
25.
Barkai
,
J.
,
1999
, “
Automatic Generation of a Diagnostic Expert System From Failure Mode and Effects Analysis (FMEA) Information
,”
SAE
Paper No. 1999-01-0060.10.4271/1999-01-0060
26.
Price
,
C.
, and
Taylor
,
N.
,
1997
, “
Multiple Fault Diagnosis From FMEA
,”
Proceedings of the 14th National Conference on Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence
, Providence, RI, July 27–31, pp.
1052
1057
.
27.
Hurdle
,
E. E.
,
Bartlett
,
L. M.
, and
Andrews
,
J. D.
,
2009
, “
Fault Diagnostics of Dynamic System Operation Using a Fault Tree Based Method
,”
Reliab. Eng. Syst. Saf.
,
94
(
9
), pp.
1371
1380
.10.1016/j.ress.2009.02.013
28.
Contini
,
S.
,
Cojazzi
,
G. G. M.
, and
Renda
,
G.
,
2008
, “
On the Use of Non-Coherent Fault Trees in Safety and Security Studies
,”
Reliab. Eng. Syst. Saf.
,
93
(
12
), pp.
1886
1895
.10.1016/j.ress.2008.03.018
29.
Hu
,
J.
,
Zhang
,
L.
,
Cai
,
Z.
, and
Wang
,
Y.
,
2015
, “
An Intelligent Fault Diagnosis System for Process Plant Using a Functional HAZOP and DBN Integrated Methodology
,”
Eng. Appl. Artif. Intell.
,
45
, pp.
119
135
.10.1016/j.engappai.2015.06.010
30.
Hidalgo
,
E. M. P.
, and
de Souza
,
G. F. M.
,
2015
, “
The Application of Risk and Reliability Techniques to Acquire Knowledge in the Development of Expert System for Fault Diagnosis
,”
XXIV European Safety and Reliability Conference ESREL, Wroclaw, Poland, Sept. 14–18, pp.
825
834
.
31.
Pearl
,
J.
,
1988
,
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
, 1st ed.,
Morgan Kaufman
, San Francisco,
CA
.10.1016/C2009-0-27609-4
32.
Russell
,
S.
, and
Norvig
,
P.
,
2010
,
Artificial Intelligence a Modern Approach
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
33.
Maturana
,
M. C.
,
2010
, “
Aplicação de Redes Bayesianas na Análise da Contribuição Do Erro Humano em Acidentes de Colisão
,”
Escola Politécnica da Universidade de São Paulo
, São Paulo, Brazil.
34.
Lin
,
X.
,
Cheng
,
B.
, and
Chen
,
J.
,
2010
, “
Context-Aware End-to-End QoS Qualitative Diagnosis and Quantitative Guarantee Based on Bayesian Network
,”
Comput. Commun.
,
33
(
17
), pp.
2132
2144
.10.1016/j.comcom.2010.07.021
35.
Yan
,
Z.
, and
Peng
,
L.
,
2011
,
Application of Bayesian Network in Failure Diagnosis of Hydro-Electrical Simulation System
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg, Germany
, pp.
691
698
.
36.
Jin
,
S.
,
Liu
,
Y.
, and
Lin
,
Z.
,
2012
, “
A Bayesian Network Approach for Fixture Fault Diagnosis in Launch of the Assembly Process
,”
Int. J. Prod. Res.
,
50
(
23
), pp.
6655
6666
.10.1080/00207543.2011.611543
37.
Mechraoui
,
A.
,
Medjaher
,
K.
, and
Zerhouni
,
N.
,
2008
, “
Bayesian Based Fault Diagnosis: Application to an Electrical Motor
,”
IFAC Proc.
41, pp. 7381–7386.10.3182/20080706-5-KR-1001.01248
38.
Xu
,
B. G.
,
2012
, “
Intelligent Fault Inference for Rotating Flexible Rotors Using Bayesian Belief Network
,”
Expert Syst. Appl.
,
39
(
1
), pp.
816
822
.10.1016/j.eswa.2011.07.079
39.
Bobbio
,
A.
,
Portinale
,
L.
,
Minichino
,
M.
, and
Ciancamerla
,
E.
,
2001
, “
Improving the Analysis of Dependable Systems by Mapping Fault Trees Into Bayesian Networks
,”
Reliab. Eng. Syst. Saf.
,
71
(
3
), pp.
249
260
.10.1016/S0951-8320(00)00077-6
40.
Chiremsel
,
Z.
,
Said
,
R. N.
, and
Chiremsel
,
R.
,
2016
, “
Probabilistic Fault Diagnosis of Safety Instrumented Systems Based on Fault Tree Analysis and Bayesian Network
,”
J. Fail. Anal. Prev.
,
16
(
5
), pp.
747
760
.10.1007/s11668-016-0140-z
41.
Lampis
,
M.
, and
Andrews
,
J. D.
,
2009
, “
Bayesian Belief Networks for System Fault Diagnostics
,”
Qual. Reliab. Eng. Int.
,
25
(
4
), pp.
409
426
.10.1002/qre.978
42.
Lo
,
C. H.
,
Wong
,
Y. K.
, and
Rad
,
A. B.
,
2011
, “
Bond Graph Based Bayesian Network for Fault Diagnosis
,”
Appl. Soft Comput. J.
,
11
(
1
), pp.
1208
1212
.10.1016/j.asoc.2010.02.019
43.
INCOSE
,
2015
,
Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities
, 4th ed.,
Wiley
,
Hoboken, NJ
.
44.
ISO/IEC/IEEE
,
2015
, “
Systems and Software Engineering—System Life Cycle Processes
,”
Standard No. ISO/IEC/IEEE15288, New Delhi, India.
45.
Friedenthal
,
S.
,
Moore
,
A.
, and
Steiner
,
R.
,
2015
,
A Practical Guide to SysML: The Systems Modeling Language
, 3rd ed.,
Morgan Kaufmann
,
Waltham, MA
.
46.
Debbabi
,
M.
,
Hassaïne
,
F.
,
Jarraya
,
Y.
,
Soeanu
,
A.
, and
Alawneh
,
L.
,
2010
,
Verification and Validation in Systems Engineering
, 1st ed.,
Springer Berlin Heidelberg
,
Berlin, Heidelberg, Germany
.
47.
Helle
,
P.
,
2012
, “
Automatic SysML-Based Safety Analysis
,”
Proceedings of the Fifth International Workshop on Model Based Architecting and Construction of Embedded Systems—ACES-MB ‘12
, Innsbruck, Austria, Sept. 30, pp.
19
24
.10.1145/2432631.2432635
48.
David
,
P.
,
Idasiak
,
V.
, and
Kratz
,
F.
,
2010
, “
Reliability Study of Complex Physical Systems Using SysML
,”
Reliab. Eng. Syst. Saf.
,
95
(
4
), pp.
431
450
.10.1016/j.ress.2009.11.015
49.
Hecht
,
M.
,
Dimpfl
,
E.
, and
Pinchak
,
J.
,
2014
, “
Automated Generation of Failure Modes and Effects Analysis From SysML Models
,”
IEEE
25th International Symposium on Software Reliability Engineering, Naples, Italy, Nov. 3–6, pp.
62
65
.10.1109/ISSREW.2014.117
50.
Yakymets
,
N.
,
Jaber
,
H.
, and
Lanusse
,
A.
,
2013
, “
Model-Based System Engineering for Fault Tree Generation and Analysis
,”
Proceedings First International Conference on Model-Driven Engineering and Software Development
, Barcelona, Spain, Feb. 19–Feb. 21, pp.
210
214
. https://www.researchgate.net/publication/282863498_Model-Based_System_Engineering_for_Fault_Tree_Generation_and_Analysis
51.
Mhenni
,
F.
,
Nguyen
,
N.
, and
Choley
,
J. Y.
,
2014
, “
Automatic Fault Tree Generation From SysML System Models
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
), Besacon, France, July 8–11, pp.
715
720
.10.1109/AIM.2014.6878163
52.
Mhenni
,
F.
,
Nguyen
,
N.
, and
Choley
,
J.
,
2018
, “
SafeSysE: A Safety Analysis Integration in Systems Engineering Approach
,”
IEEE Syst. J.
,
12
(
1
), pp.
161
172
.10.1109/JSYST.2016.2547460
53.
Suiphon
,
B.
,
Simeu-Abazi
,
Z.
, and
Gascard
,
É.
,
2014
, “
Premiers Pas Vers le Diagnostic de Défaillances Par Exploitation d ‘un Modèle SysML—First Steps Toward Fault Diagnosis Exploiting a SysML Model
,”
19° Congrès de Maîtrise Des Risques et Sûreté de Fonctionnement
, Dijon, France, Oct. 21–23, pp.
1
10
.
54.
Melani
,
A. H. A.
,
Martha de Souza
,
G. F.
,
Murad
,
C.
,
Caminada Netto
,
A. A.
, and
Nabeta
,
S. I.
,
2017
, “
Petri Net Based Reliability Analysis of Thermoelectric Plant Cooling Tower
,”
Proceedings of the 24th ABCM International Congress of Mechanical Engineering
, Curitiba, Brazil, Dec. 3–8.10.26678/ABCM.COBEM2017.COB17-2203
55.
OREDA
,
2002
,
Offshore Reliability Data Handbook
, 4th ed.,
Det Norske Veritas
,
Hovik, Norway
.
56.
NPRD
,
1995
,
Nonelectronic Parts Reliability Data
, 3rd ed.,
Reliability Analysis Center
, Rome,
NY
.
57.
Cressent
,
R.
,
David
,
P.
,
Idasiak
,
V.
, and
Kratz
,
F.
,
2013
, “
Designing the Database for a Reliability Aware Model-Based System Engineering Process
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
171
182
.10.1016/j.ress.2012.10.014
58.
SparxSystems
,
2019
, “
Enterprise Aschitect
,” SparxSystems, Victoria, Australia, accessed Jan. 16, 2019, https://sparxsystems.com/products/ea/
59.
BayesFusion
,
2019
, “
Genie Modeler
,” BayesFusion, Pittsburgh, PA, accessed Jan. 16, 2019, https://www.bayesfusion.com/genie/
60.
Pasquale
,
V. D.
,
Miranda
,
S.
,
Iannone
,
R.
, and
Riemma
,
S.
,
2015
, “
A Simulator for Human Error Probability Analysis (SHERPA)
,”
Reliab. Eng. Syst. Saf
,
139
, pp.
17
32
.10.1016/j.ress.2015.02.003
61.
Mandal
,
S.
,
Singh
,
K.
,
Behera
,
R. K.
,
Sahu
,
S. K.
,
Raj
,
N.
, and
Maiti
,
J.
,
2015
, “
Human Error Identification and Risk Prioritization in Overhead Crane Operations Using HTA, SHERPA and Fuzzy VIKOR Method
,”
Expert Syst. Appl.
,
42
(
20
), pp.
7195
7206
.10.1016/j.eswa.2015.05.033
62.
Pyy
,
P.
,
2001
, “
An Analysis of Maintenance Failures at a Nuclear Power Plant
,”
Reliab. Eng. Syst. Saf.
,
72
(
3
), pp.
293
302
.10.1016/S0951-8320(01)00026-6
63.
De Felice
,
F.
,
Petrillo
,
A.
, and
Zomparelli
,
F.
,
2016
, “
A Hybrid Model for Human Error Probability Analysis
,”
IFAC-PapersOnLine
,
49
(
12
), pp.
1673
1678
.10.1016/j.ifacol.2016.07.821
64.
Castiglia
,
F.
,
Giardina
,
M.
, and
Tomarchio
,
E.
,
2015
, “
THERP and HEART Integrated Methodology for Human Error Assessment
,”
Radiat. Phys. Chem.
,
116
, pp.
262
266
.10.1016/j.radphyschem.2014.12.012
You do not currently have access to this content.