Skip Nav Destination
Issues
April 2022
ISSN 0094-9930
EISSN 1528-8978
In Memoriam
In Memoriam: Georg Ernest Otto Widera (1938–2022)
J. Pressure Vessel Technol. April 2022, 144(2): 020101.
doi: https://doi.org/10.1115/1.4053918
Editorial
Reviewer's Recognition
J. Pressure Vessel Technol. April 2022, 144(2): 020201.
doi: https://doi.org/10.1115/1.4053851
Research Papers
Design and Analysis
A Deep-Sea Sediment Sampling System: Design, Analysis and Experimental Verification
J. Pressure Vessel Technol. April 2022, 144(2): 021301.
doi: https://doi.org/10.1115/1.4051628
Shakedown and Limit Analysis of Kinematic Hardening Piping Elbows Under Internal Pressure and Bending Moments
J. Pressure Vessel Technol. April 2022, 144(2): 021302.
doi: https://doi.org/10.1115/1.4051630
Topics:
Hardening
,
Kinematics
,
Pipes
,
Pressure
,
Stress
,
Theorems (Mathematics)
The Unified Theory of Tubesheet Design—Part I: Theoretical Foundation
J. Pressure Vessel Technol. April 2022, 144(2): 021303.
doi: https://doi.org/10.1115/1.4051795
Topics:
Design
,
Flanges
,
Heat exchangers
,
Pressure
,
Shells
,
Stress
,
Unified field theories
,
Deflection
,
Fluid dynamics
,
Displacement
The Unified Theory of Tubesheet Design—Part II: Supplement to the Theoretical Analysis
J. Pressure Vessel Technol. April 2022, 144(2): 021304.
doi: https://doi.org/10.1115/1.4051796
Topics:
Design
,
Fluid dynamics
,
Pressure
,
Shells
,
Stiffness
,
Theoretical analysis
,
Tube bending
,
Unified field theories
,
Stress
,
Displacement
The Unified Theory of Tubesheet Design—Part III: Comparison With ASME Method and Case Study
J. Pressure Vessel Technol. April 2022, 144(2): 021305.
doi: https://doi.org/10.1115/1.4051797
Topics:
Design
,
Finite element analysis
,
Heat exchangers
,
Shells
,
Stress
,
Unified field theories
,
Membranes
,
Temperature gradient
,
Pressure
Fluid-Structure Interaction
A Coupled Two-Way Fluid–Structure Interaction Analysis for the Dynamics of a Partially Confined Cantilevered Pipe Under Simultaneous Internal and External Axial Flow in Opposite Directions
J. Pressure Vessel Technol. April 2022, 144(2): 021401.
doi: https://doi.org/10.1115/1.4052209
Topics:
Flow (Dynamics)
,
Fluid structure interaction
,
Fluids
,
Pipes
,
Simulation
,
Dynamics (Mechanics)
On the Hierarchy of Models for Pipe Transients: From Quasi-Two-Dimensional Water Hammer Models to Full Three-Dimensional Computational Fluid Dynamics Models
J. Pressure Vessel Technol. April 2022, 144(2): 021402.
doi: https://doi.org/10.1115/1.4051930
Topics:
Computational fluid dynamics
,
Pipes
,
Turbulence
,
Water hammer
,
Transients (Dynamics)
Investigation of Pump Failure-Induced Waterhammer Waves: A Case Study
J. Pressure Vessel Technol. April 2022, 144(2): 021403.
doi: https://doi.org/10.1115/1.4051512
Topics:
Failure
,
Pipes
,
Piping systems
,
Pressure
,
Pumps
,
Steel
,
Surges
,
Waves
,
Oscillations
,
Flow (Dynamics)
Simulation and Experimental Study on Hydraulic Sandblasting Cutting in Uncontrolled Blowout Well
J. Pressure Vessel Technol. April 2022, 144(2): 021404.
doi: https://doi.org/10.1115/1.4052393
Evaluating the Performance Degradation of Centrifugal Pumps Using the Principal Component Analysis
J. Pressure Vessel Technol. April 2022, 144(2): 021405.
doi: https://doi.org/10.1115/1.4052522
Topics:
Centrifugal pumps
,
Impellers
,
Principal component analysis
,
Pumps
,
Vibration
,
Flow (Dynamics)
,
Bearings
,
Signals
Materials and Fabrication
Pressure Effects on the Lifetime of Gas High Density Polyethylene Pipes
J. Pressure Vessel Technol. April 2022, 144(2): 021501.
doi: https://doi.org/10.1115/1.4051615
Topics:
Density
,
Pipes
,
Polyethylene pipes
,
Pressure
,
Temperature
,
Electromagnetic induction
Numerical Calculation About Influence of Crystallizer Structure on the Stress Evolution Process of Horizontal Continuous Casting of Copper Tubes
J. Pressure Vessel Technol. April 2022, 144(2): 021502.
doi: https://doi.org/10.1115/1.4051616
A Study on Low Cycle Fatigue Life Assessment of Notched Specimens Made of 316 LN Austenitic Stainless Steel
J. Pressure Vessel Technol. April 2022, 144(2): 021503.
doi: https://doi.org/10.1115/1.4051627
Topics:
Fatigue
,
Fatigue life
,
Finite element analysis
,
Low cycle fatigue
,
Stress
,
Temperature
,
Stainless steel
,
Shear (Mechanics)
,
Stress concentration
Evaluation of the High Cycle Fatigue Properties of Double-Side-Welded AISI 321 Plates Using GTAW Process for Pressure Vessels
J. Pressure Vessel Technol. April 2022, 144(2): 021504.
doi: https://doi.org/10.1115/1.4051455
Creep–Cyclic Plasticity and Damage Assessment of an SS304 Weldolet
J. Pressure Vessel Technol. April 2022, 144(2): 021505.
doi: https://doi.org/10.1115/1.4051931
Topics:
Creep
,
Plasticity
,
Stress
,
Fatigue
,
Damage
Mode Mixity in the Fracture Toughness Evaluation of Heat-Affected-Zone Material Using SEN(T) Experiment
J. Pressure Vessel Technol. April 2022, 144(2): 021506.
doi: https://doi.org/10.1115/1.4051981
Topics:
Fracture (Materials)
,
Fracture toughness
,
Heat
,
Base metals
,
Tension
,
Pipes
Creep Deformation Property and Creep Life Evaluation of Super304H
J. Pressure Vessel Technol. April 2022, 144(2): 021507.
doi: https://doi.org/10.1115/1.4052397
Operations, Applications, and Components
Pneumatic Testing of Piping Assemblies: Criteria for Stored Energy and Pinhole Leak Detectability
J. Pressure Vessel Technol. April 2022, 144(2): 021701.
doi: https://doi.org/10.1115/1.4052452
Topics:
Energy storage
,
Leakage
,
Pipes
,
Pressure
,
Temperature
,
Testing
,
Pipelines
Technical Briefs
Automated Procedure for Constructing ASME External Pressure Charts
J. Pressure Vessel Technol. April 2022, 144(2): 024501.
doi: https://doi.org/10.1115/1.4051851
Topics:
External pressure
,
Stress-strain curves
,
Stress
,
Boilers
,
Construction
Use of a True Material Constitutive Model for Stress Analysis of a Swage Autofrettaged Tube Including ASME Code Comparison
J. Pressure Vessel Technol. April 2022, 144(2): 024502.
doi: https://doi.org/10.1115/1.4051688
Topics:
Autofrettage
,
Stress
,
Bose-Einstein condensates
Numerical Simulation and Modeling Convention of Unsteady Fluidelastic Forces of Tube Arrays
J. Pressure Vessel Technol. April 2022, 144(2): 024503.
doi: https://doi.org/10.1115/1.4052694
Topics:
Computer simulation
,
Cylinders
,
Damping
,
Errors
,
Flow (Dynamics)
,
Modeling
,
Stability
,
Simulation
,
Resolution (Optics)
,
Fluids
Assessment of a Computationally Efficient Method for Industrial Simulations of Transient Heat Transfer During Autoclave Curing
J. Pressure Vessel Technol. April 2022, 144(2): 024504.
doi: https://doi.org/10.1115/1.4052119
Retraction
Retracted: “Evaluation of the Structural Integrity of Bell–Spigot Joints in Steel Gas Pipelines” [ASME Journal of Pressure Vessel Technology, 2022, 144(2), p. 021801; DOI: 10.1115/1.4052210]
J. Pressure Vessel Technol. April 2022, 144(2): 027001.
doi: https://doi.org/10.1115/1.4052210
Topics:
Pipelines
,
Pressure vessels
,
Steel
Email alerts
RSS Feeds
The Behaviour of Elbow Elements at Pure Bending Applications Compared to Beam and Shell Element models
J. Pressure Vessel Technol
Measurement of Steam-Generator-Tube Vibration Damping Caused by Anti-Vibration-Bar Supports
J. Pressure Vessel Technol (February 2025)