Abstract

To improve the accuracy of reliability assessment, it is essential to conduct a comprehensive investigation into the constraint effect and the characteristics of the crack-tip plastic zone in a pipe with internal inclined surface cracks. We propose a novel analytical solution for the crack-tip plastic zone in a mixed mode I–II–III crack, based on the von Mises yield criterion, which includes stress intensity factors (SIFs) KII and KIII. We have examined the impact of several factors, including aspect ratio (a/c), crack depth (a/t), crack inclination angle (β), and friction coefficient (μ), on the in-plane constraint (T11), out-of-plane constraint (T33 and Tz), as well as the unified constraint (h) of a pipe containing internal inclined surface cracks under external pressure. The research reveals that geometrical configurations (aspect ratio and crack depth) have varying effects on the four constraint parameters, depending on their location along the crack front. The influence is relatively minor at the crack surface and the deepest point but becomes most pronounced at the middle point of the crack front. Additionally, the friction factor exclusively impacts the unified constraint parameter. Furthermore, we observed that the crack-tip plastic zone displays a mixed mode II–III crack at the free surface and a pure III mode at the deepest point.

References

1.
Ding
,
H.
,
Qi
,
D. T.
,
Qi
,
G. Q.
,
Wei
,
B.
,
Ding
,
N.
,
Li
,
H. B.
, and
Wang
,
F. S.
, et al.,
2020
, “
Cracking Analysis of a Newly Built Gas Transmission Steel Pipe
,”
Eng. Failure Anal.
,
118
, p.
104868
.10.1016/j.engfailanal.2020.104868
2.
Wang
,
Y. H.
,
Wang
,
G. Z.
,
Tu
,
S. T.
, and
Xuan
,
F. Z.
,
2020
, “
In-Plane and Out-of-Plane Constraint Characterization of Different Constraint Parameters for Semi-Elliptical Surface Cracks in Pipes
,”
Eng. Fract. Mech.
,
235
, p.
107161
.10.1016/j.engfracmech.2020.107161
3.
Jin
,
L. Z.
,
Zhou
,
C. Y.
,
Pei
,
Q.
,
Fan
,
Y. S.
,
Chang
,
L.
, and
He
,
X. H.
,
2022
, “
Investigation on In-Plane and Out-of-Plane Constraint Effects for Plates With I-II Mixed Mode Cracks Under Biaxial Compressive Loading
,”
Theor. Appl. Fract. Mech.
,
117
, p.
103160
.10.1016/j.tafmec.2021.103160
4.
Xin
,
G.
,
Hangong
,
W.
,
Xingwu
,
K.
, and
Liangzhou
,
J.
,
2010
, “
Analytic Solutions to Crack Tip Plastic Zone Under Various Loading Conditions
,”
Eur. J. Mech.
,
29
(
4
), pp.
738
745
.10.1016/j.euromechsol.2010.03.003
5.
Zhao
,
J.
, and
Guo
,
W.
,
2012
, “
Three-Parameter K-T-Tz Characterization of the Crack-Tip Fields in Compact-Tension-Shear Specimens
,”
Eng. Fract. Mech.
,
92
, pp.
72
88
.10.1016/j.engfracmech.2012.06.004
6.
Mostafavi
,
M.
,
Smith
,
D. J.
, and
Pavier
,
M. J.
,
2011
, “
Fracture of Aluminium Alloy 2024 Under Biaxial and Triaxial Loading
,”
Eng. Fract. Mech.
,
78
(
8
), pp.
1705
1716
.10.1016/j.engfracmech.2010.11.006
7.
Qu
,
J.
, and
Wang
,
X.
,
2006
, “
Solutions of T-Stresses for Quarter-Elliptical Corner Cracks in Finite Thickness Plates Subject to Tension and Bending
,”
Int. J. Pressure Vessels Piping
,
83
(
8
), pp.
593
606
.10.1016/j.ijpvp.2006.04.003
8.
Wang
,
X.
,
2003
, “
Elastic T-Stress Solutions for Semi-Elliptical Surface Cracks in Finite Thickness Plates
,”
Eng. Fract. Mech.
,
70
(
6
), pp.
731
756
.10.1016/S0013-7944(02)00081-4
9.
Wang
,
X.
,
2004
, “
Elastic T-Stress Solutions for Penny-Shaped Cracks Under Tension and Bending
,”
Eng. Fract. Mech.
,
71
(
16–17
), pp.
2283
2298
.10.1016/j.engfracmech.2004.02.001
10.
Wang
,
Y. Z.
,
Miao
,
X. T.
,
Zhou
,
C. Y.
, and
Lv
,
F.
,
2019
, “
A Study of Txx-Stress on Mixed Mode I-II Semi-Elliptical Surface Crack in Plates
,”
Theor. Appl. Fract. Mech.
,
103
, p.
102305
.10.1016/j.tafmec.2019.102305
11.
Miao
,
X. T.
,
Zhou
,
C. Y.
,
Lv
,
F.
,
Li
,
J.
, and
He
,
X. H.
,
2017
, “
An Investigation of T-Stresses in a Plate With an Inclined Crack Under Biaxial Loadings
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
(
3
), pp.
435
447
.10.1111/ffe.12508
12.
Jin
,
L. Z.
,
Pei
,
Q.
,
Yu
,
C. Y.
,
Chang
,
L.
,
He
,
X. H.
, and
Zhou
,
C. Y.
,
2021
, “
T-Stresses Solution and Out-of-Plane Constraint for Central Cracked Plate (CCP) With I-II Mixed Mode Crack Under Uniaxial Compression
,”
Theor. Appl. Fract. Mech.
,
115
, p.
103040
.10.1016/j.tafmec.2021.103040
13.
Pei
,
Q.
,
Jin
,
L.-Z.
,
Zhou
,
C.-Y.
, and
He
,
X.-H.
,
2023
, “
Investigation of Constraint Effect and Fracture Mode for Mixed Mode Inclination Surface Crack in Infinite Plate Under Compression
,”
ASME J. Pressure Vessel Technol.
,
145
(
5
), p.
051302
.10.1115/1.4062952
14.
Smith
,
D. J.
,
Ayatollahi
,
M. R.
, and
Pavier
,
M. J.
,
2006
, “
On the Consequences of T-Stress in Elastic Brittle Fracture
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
462
(
2072
), pp.
2415
2437
.10.1098/rspa.2005.1639
15.
Shahani
,
A. R.
, and
Tabatabaei
,
S. A.
,
2009
, “
Effect of T-Stress on the Fracture of a Four Point Bend Specimen
,”
Mater. Des.
,
30
(
7
), pp.
2630
2635
.10.1016/j.matdes.2008.10.031
16.
Liu
,
Z.
,
Yu
,
D.
,
Tang
,
J.
,
Chen
,
X.
, and
Wang
,
X.
,
2018
, “
Stress Intensity Factor and T-Stress Solutions for Three-Dimensional Clamped Single Edge Notched Tension (SENT) Specimens
,”
Int. J. Pressure Vessels Piping
,
168
, pp.
11
23
.10.1016/j.ijpvp.2018.08.006
17.
González-Albuixech
,
V. F.
,
Giner
,
E.
,
Fernández-Sáez
,
J.
, and
Fernández-Canteli
,
A.
,
2011
, “
Influence of the T33-Stress on the 3-D Stress State Around Corner Cracks in an Elastic Plate
,”
Eng. Fract. Mech.
,
78
(
2
), pp.
412
427
.10.1016/j.engfracmech.2010.11.003
18.
Meshii
,
T.
, and
Tanaka
,
T.
,
2010
, “
Experimental T33-Stress Formulation of Test Specimen Thickness Effect on Fracture Toughness in the Transition Temperature Region
,”
Eng. Fract. Mech.
,
77
(
5
), pp.
867
877
.10.1016/j.engfracmech.2010.01.014
19.
Matvienko
,
Y. G.
,
2015
, “
The Effect of Out-of-Plane Constraint in Terms of the T-Stress in Connection With Specimen Thickness
,”
Theor. Appl. Fract. Mech.
,
80
, pp.
49
56
.10.1016/j.tafmec.2015.05.007
20.
Guo
,
W.
,
1993
, “
Elastoplastic Three Dimensional Crack Border Field—I. Singular Structure of the Field
,”
Eng. Fract. Mech.
,
46
(
1
), pp.
93
104
.10.1016/0013-7944(93)90306-D
21.
Guo
,
W.
,
1993
, “
Elastoplastic Three Dimensional Crack Border Field—II. Asymptotic Solution for the Field
,”
Eng. Fract. Mech.
,
46
(
1
), pp.
105
113
.10.1016/0013-7944(93)90307-E
22.
Guo
,
W.
,
1995
, “
Elasto-Plastic Three-Dimensional Crack Border Field—III. Fracture Parameters
,”
Eng. Fract. Mech.
,
51
(
1
), pp.
51
71
.10.1016/0013-7944(94)00215-4
23.
Zhang
,
B.
, and
Guo
,
W.
,
2005
, “
Tz Constraints of Semi-Elliptical Surface Cracks in Elastic Plates Subjected to Uniform Tension Loading
,”
Int. J. Fract.
,
131
(
2
), pp.
173
187
.10.1007/s10704-004-5105-7
24.
She
,
C.
, and
Guo
,
W.
,
2007
, “
The Out-of-Plane Constraint of Mixed-Mode Cracks in Thin Elastic Plates
,”
Int. J. Solids Struct.
,
44
(
9
), pp.
3021
3034
.10.1016/j.ijsolstr.2006.09.002
25.
Zhao
,
J.
,
Guo
,
W.
, and
She
,
C.
,
2007
, “
The In-Plane and Out-of-Plane Stress Constraint Factors and K-T-Tz Description of Stress Fields Near the Border of a Quarter-Elliptical Corner Crack
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(
8
), pp.
673
681
.10.1111/j.1460-2695.2007.01114.x
26.
Shlyannikov
,
V. N.
,
Boychenko
,
N. V.
, and
Tartygasheva
,
A. M.
,
2011
, “
In-Plane and Out-of-Plane Crack-Tip Constraint Effects Under Biaxial Nonlinear Deformation
,”
Eng. Fract. Mech.
,
78
(
8
), pp.
1771
1783
.10.1016/j.engfracmech.2011.01.010
27.
Williams
,
M. L.
, and
Pasadena
,
C.
,
1952
, “
On the Stress Distribution at the Base of a Stationary Crack
,”
ASME J. Appl. Mech.
,
19
(
4
), pp.
526
528
.10.1115/1.4010553
28.
Rice
,
J. R.
, and
Rosengren
,
G. F.
,
1968
, “
Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material
,”
J. Mech. Phys. Solids
,
16
(
1
), pp.
1
12
.10.1016/0022-5096(68)90013-6
29.
O’Dowd
,
N. P.
, and
Shih
,
C. F.
,
1991
, “
Family of Crack-Tip Fields Characterized by a Triaxiality Parameter—I. Structure of Fields
,”
J. Mech. Phys. Solids
,
39
(
8
), pp.
989
1015
.10.1016/0022-5096(91)90049-T
30.
Yang
,
S.
,
Chao
,
Y. J.
, and
Sutton
,
M. A.
,
1993
, “
Higher Order Asymptotic Crack Tip Fields in a Power-Law Hardening Material
,”
Eng. Fract. Mech.
,
45
(
1
), pp.
1
20
.10.1016/0013-7944(93)90002-A
31.
Betegón
,
C.
, and Hancock, J. W.,
1991
, “
Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields
,”
ASME J. Appl. Mech.
,
58
(
1
), pp.
104
110
.10.1115/1.2897135
32.
Nikishkov
,
G. P.
,
1995
, “
An Algorithm and a Computer Program for the Three-Term Asymptotic Expansion of Elastic-Plastic Crack Tip Stress and Displacement Fields
,”
Eng. Fract. Mech.
,
50
(
1
), pp.
65
83
.10.1016/0013-7944(94)00139-9
33.
Clausmeyer
,
H.
,
Kussmaul
,
K.
, and
Roos
,
E.
,
1991
, “
Influence of Stress State on the Failure Behawsor of Cracked Components Made of Steel
,”
ASME Appl. Mech. Rev.
,
44
(
2
), pp.
77
92
.10.1115/1.3119495
34.
Zhao
,
J.
,
Guo
,
W.
, and
She
,
C.
,
2008
, “
Three-Parameter Approach for Elastic-Plastic Fracture of the Semi-Elliptical Surface Crack Under Tension
,”
Int. J. Mech. Sci.
,
50
(
7
), pp.
1168
1182
.10.1016/j.ijmecsci.2008.04.006
35.
Yang
,
J.
,
Wang
,
G. Z.
,
Xuan
,
F. Z.
, and
Tu
,
S. T.
,
2014
, “
Unified Correlation of In-Plane and Out-of-Plane Constraints With Fracture Toughness
,”
Fatigue Fract. Eng. Mater. Struct.
,
37
(
2
), pp.
132
145
.10.1111/ffe.12094
36.
Wang
,
Y. H.
,
Wang
,
G. Z.
,
Tu
,
S. T.
, and
Xuan
,
F. Z.
,
2020
, “
Unified Constraint-Based FAD Assessments for Ductile Fracture in Cracked Pipes
,”
Int. J. Pressure Vessels Piping
,
185
, p.
104132
.10.1016/j.ijpvp.2020.104132
37.
Jing
,
P.
,
Khraishi
,
T.
, and
Gorbatikh
,
L.
,
2003
, “
Closed-Form Solutions for the Mode II Crack Tip Plastic Zone Shape
,”
Int. J. Fract.
,
122
(
3/4
), pp.
L137
L142
.10.1023/B:FRAC.0000005806.28267.f6
38.
Benrahou
,
K. H.
,
Benguediab
,
M.
,
Belhouari
,
M.
,
Nait-Abdelaziz
,
M.
, and
Imad
,
A.
,
2007
, “
Estimation of the Plastic Zone by Finite Element Method Under Mixed Mode (I and II) Loading
,”
Comput. Mater. Sci.
,
38
(
4
), pp.
595
601
.10.1016/j.commatsci.2006.04.001
39.
Hrstka
,
M.
,
Žák
,
S.
, and
Vojtek
,
T.
,
2018
, “
Large Plastic Zones and Extensive Influence of Notch Under Near-Threshold Mode II and Mode III Loading of Fatigue Cracks
,”
Procedia Struct. Integr.
,
13
, pp.
1123
1128
.10.1016/j.prostr.2018.12.235
40.
Schütte
,
H.
, and
Molla-Abbasi
,
K.
,
2007
, “
On the Full Set of Elastic T-Stress Terms of Internal Circular Cracks Under Mixed-Mode Loading Conditions
,”
Eng. Fract. Mech.
,
74
(
17
), pp.
2770
2787
.10.1016/j.engfracmech.2007.01.001
41.
Nazarali
,
Q.
, and
Wang
,
X.
,
2011
, “
The Effect of T-Stress on Crack-Tip Plastic Zones Under Mixed-Mode Loading Conditions
,”
Fatigue Fract. Eng. Mater. Struct.
,
34
(
10
), pp.
792
803
.10.1111/j.1460-2695.2011.01573.x
42.
Matvienko
,
Y. G.
,
2014
, “
The Effect of the Non-Singular T-Stress Components on Crack Tip Plastic Zone Under Mode I Loading
,”
Procedia Mater. Sci.
,
3
, pp.
141
146
.10.1016/j.mspro.2014.06.026
43.
Matvienko
,
Y. G.
,
2020
, “
The Effect of Crack-Tip Constraint in Some Problems of Fracture Mechanics
,”
Eng. Failure Anal.
,
110
, p.
104413
.10.1016/j.engfailanal.2020.104413
44.
Huang
,
X.
,
Liu
,
Y.
, and
Dai
,
Y.
,
2018
, “
Characteristics and Effects of T-Stresses in Central-Cracked Unstiffened and Stiffened Plates Under Mode I Loading
,”
Eng. Fract. Mech.
,
188
, pp.
393
415
.10.1016/j.engfracmech.2017.09.017
45.
Huang
,
X.
,
2023
, “
Roles of In-Plane and Out-of-Plane T-Stresses in Crack Tip Plastic Zones and Fracture Toughness Under Mixed Mode I/II Loading
,”
Eng. Fract. Mech.
,
277
, p.
108990
.10.1016/j.engfracmech.2022.108990
46.
Gintalas
,
M.
,
Ainsworth
,
R. A.
, and
Scenini
,
F.
,
2017
, “
T-Stress Solutions for Through-Wall Circumferential Cracks in Straight Pipes Under Bending
,”
Int. J. Pressure Vessels Piping
,
152
, pp.
27
37
.10.1016/j.ijpvp.2017.04.004
47.
Huh
,
N. S.
,
2006
, “
Elastic T Stress Estimates for Circumferential Surface-Cracked Cylinders
,”
Fatigue Fract. Eng. Mater. Struct.
,
29
(
1
), pp.
57
69
.10.1111/j.1460-2695.2006.00961.x
48.
Meshii
,
T.
,
Tanaka
,
T.
, and
Lu
,
K.
,
2010
, “
T-Stress Solutions for a Semi-Elliptical Axial Surface Crack in a Cylinder Subjected to Mode-I Non-Uniform Stress Distributions
,”
Eng. Fract. Mech.
,
77
(
13
), pp.
2467
2478
.10.1016/j.engfracmech.2010.06.007
49.
Xu
,
J.
,
Zhang
,
Z. L.
,
Østby
,
E.
,
Nyhus
,
B.
, and
Sun
,
D. B.
,
2010
, “
Constraint Effect on the Ductile Crack Growth Resistance of Circumferentially Cracked Pipes
,”
Eng. Fract. Mech.
,
77
(
4
), pp.
671
684
.10.1016/j.engfracmech.2009.11.005
50.
Wang
,
Y. H.
,
Wang
,
G. Z.
,
Tu
,
S. T.
, and
Xuan
,
F. Z.
,
2019
, “
Ductile Fracture Prediction Based on J-Integral and Unified Constraint Parameters for Cracked Pipes
,”
Eng. Fract. Mech.
,
215
, pp.
1
15
.10.1016/j.engfracmech.2019.05.001
51.
Liu
,
H.
,
2018
, “
Wing-Crack Initiation Angle: A New Maximum Tangential Stress Criterion by Considering T-Stress
,”
Eng. Fract. Mech.
,
199
, pp.
380
391
.10.1016/j.engfracmech.2018.06.010
52.
Randeniya
,
C.
,
Robert
,
D. J.
,
Fu
,
G.
, and
Li
,
C. Q.
,
2016
, “
The Effect of Corrosion Patch Geometry on Stress Intensity Factors for External Surface Cracks in Cast Iron Water Mains
,”
Sustainable Construction Materials and Technologies
, Las Vegas, NV, Aug.
7
11
.10.18552/2016/SCMT4M108
53.
Zhang
,
T.
,
Lu
,
K.
,
Katsuyama
,
J.
, and
Li
,
Y.
,
2021
, “
Stress Intensity Factor Solutions for Surface Cracks With Large Aspect Ratios in Cylinders and Plates
,”
Int. J. Pressure Vessels Piping
,
189
, p.
104262
.10.1016/j.ijpvp.2020.104262
54.
Qian
,
G.
,
Gonzalez-Albuixech
,
V. F.
, and
Niffenegger
,
M.
,
2014
, “
In-Plane and Out-of-Plane Constraint Effects Under Pressurized Thermal Shocks
,”
Int. J. Solids Struct.
,
51
(
6
), pp.
1311
1321
.10.1016/j.ijsolstr.2013.12.021
55.
Yao
,
X.-M.
,
Zhang
,
Y.-C.
,
Pei
,
Q.
,
Jin
,
L.-Z.
,
Ma
,
T.-H.
,
He
,
X.-H.
, and
Zhou
,
C.-Y.
,
2022
, “
Empirical Solution of Stress Intensity Factors for the Inclined Inner Surface Crack of Pipe Under External Pressure and Axial Compression
,”
Materials (Basel)
,
16
(
1
), p.
364
.10.3390/ma16010364
56.
ABAQUS
, 2014,
Abaqus 6.14. Abaqus 6.14 Analysis User’s Guide
, ABAQUS, Johnston, RI.
You do not currently have access to this content.